搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展

郭道友 李培刚 陈政委 吴真平 唐为华

引用本文:
Citation:

超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展

郭道友, 李培刚, 陈政委, 吴真平, 唐为华

Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector

Guo Dao-You, Li Pei-Gang, Chen Zheng-Wei, Wu Zhen-Ping, Tang Wei-Hua
PDF
HTML
导出引用
  • β-Ga2O3是一种新型的超宽禁带氧化物半导体, 禁带宽度约为4.9 eV, 对应日盲区, 对波长大于253 nm的深紫外—可见光具有高的透过率, 是天然的日盲紫外探测及深紫外透明电极材料. 本文介绍了Ga2O3材料的晶体结构、基本物性与器件应用, 并综述了β-Ga2O3在深紫外透明导电电极和日盲紫外探测器中的最新研究进展. Sn掺杂的Ga2O3薄膜电导率可达到32.3 S/cm, 透过率大于88%, 但离商业化的透明导电电极还存在较大差距. 在日盲紫外探测器应用方面, 基于异质结结构的器件展现出更高的光响应度和更快的响应速度, ZnO/Ga2O3核/壳微米线的探测器综合性能最佳, 在–6 V偏压下其对254 nm深紫外光的光响应度达1.3 × 103 A/W, 响应时间为20 ${\text{μ}}{\rm{s}}$.
    Gallium oxide (Ga2O3), with a bandgap of about 4.9 eV, is a new type of ultra-wide bandgap semiconductor material. The Ga2O3 can crystallize into five different phases, i.e. α, β, γ, δ, and ε-phase. Among them, the monoclinic β-Ga2O3 (space group: C2/m) with the lattice parameters of a = 12.23 Å, b = 3.04 Å, c = 5.80 Å, and β = 103.7° has been recognized as the most stable phase. The β-Ga2O3 can be grown in bulk form from edge-defined film-fed growth with a low-cost method. With a high theoretical breakdown electrical field (8 MV/cm) and large Baliga’s figure of merit, the β-Ga2O3 is a potential candidate material for next-generation high-power electronics (including diode and field effect transistor) and extreme environment electronics [high temperature, high radiation, and high voltage (low power) switching]. Due to a high transmittance to the deep ultraviolet-visible light with a wavelength longer than 253 nm, the β-Ga2O3 is a natural material for solar-blind ultraviolet detection and deep-ultraviolet transparent conductive electrode. In this paper, the crystal structure, physical properties and device applications of Ga2O3 material are introduced. And the latest research progress of β-Ga2O3 in deep ultraviolet transparent conductive electrode and solar-blind ultraviolet photodetector are reviewed. Although Sn doped Ga2O3 thin film has a conductivity of up to 32.3 S/cm and a transmittance greater than 88%, there is still a long way to go for commercial transparent conductive electrode. At the same time, the development history of β-Ga2O3 solar-blind ultraviolet photodetectors based on material type (nanometer, single crystal and thin film) is described in chronological order. The photodetector based on quasi-two-dimensional β-Ga2O3 flakes shows the highest responsivity (1.8 × 105 A/W). The photodetector based on ZnO/Ga2O3 core/shell micron-wire has a best comprehensive performance, which exhibits a responsivity of 1.3 × 103 A/W and a response time ranging from 20 ${\text{μ}}{\rm{s}}$ to 254 nm light at –6 V. We look forward to applying the β-Ga2O3 based solar-blind ultraviolet photodetectors to military (such as: missile early warning and tracking, ultraviolet communication, harbor fog navigation, and so on) and civilian fields (such as ozone hole monitoring, disinfection and sterilization ultraviolet intensity monitoring, high voltage corona detection, forest fire ultraviolet monitoring, and so on).
      通信作者: 唐为华, whtang@bupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61704153, 51572241, 61774019, 51572033)和北京市科委(批准号: SX2018-04)资助的课题.
      Corresponding author: Tang Wei-Hua, whtang@bupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61704153, 51572241, 61774019, 51572033) and Beijing Municipal Commission of Science and Technology, China (Grant No. SX2018-04).
    [1]

    程轶 2013 博士学位论文(大连: 大连理工大学)

    Cheng Y 2013 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [2]

    马海林, 苏庆 2014 物理学报 63 116701Google Scholar

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar

    [3]

    潘惠平, 成枫锋, 李琳, 洪瑞华, 姚淑德 2013 物理学报 62 048801Google Scholar

    Pan H P, Cheng F F, Li L, Hong R H, Yao S D 2013 Acta Phys. Sin. 62 048801Google Scholar

    [4]

    Roy R, Hill V G, Osborn E F 1952 J. Am. Chem. Soc. 74 719Google Scholar

    [5]

    Kaneko K, Nomura T, Kakeya I, Fujita S 2009 Appl. Phys. Express 2 075501Google Scholar

    [6]

    Fujita S, Kaneko K 2014 J. Cryst. Growth 401 588Google Scholar

    [7]

    Shinohara D, Fujita S 2008 Jpn. J. Appl. Phys. 47 7311Google Scholar

    [8]

    Schewski R, Wagner G, Baldini M, Gogova D, Galazka Z, Schulz T, Remmele T, Markurt T, Wenckstern H V, Grundmann M, Bierwagen O, Vogt P, Albrecht M 2015 Appl. Phys. Express 8 011101Google Scholar

    [9]

    Lee S D, Akaiwa K, Fujita S 2013 Phys. Status Solidi C 10 1592Google Scholar

    [10]

    Lee S D, Ito Y, Kaneko K, Fujita S 2015 Jpn. J. Appl. Phys. 54 030301Google Scholar

    [11]

    Kaneko K, Nomura T, Fujita S 2010 Phys. Status Solidi C 7 2467Google Scholar

    [12]

    Kaneko K, Kakeya I, Komori S, Fujita S 2013 J. Appl. Phys. 113 233901Google Scholar

    [13]

    Mitome M, Kohiki S, Nagai T, Kurashima K, Kimoto K, Bando Y 2013 Cryst. Growth Des. 13 3577Google Scholar

    [14]

    Wang T, Farvid S S, Abulikemu M, Radovanovic P V 2010 J. Am. Chem. Soc. 132 9250Google Scholar

    [15]

    Playford H Y, Hannon A C, Tucker M G, Dawson D M, Ashbrook S E, Kastiban R J, Sloan J, Walton R I 2014 J. Phys. Chem. C 118 16188Google Scholar

    [16]

    Lorenzi R, Paleari A, Golubev N V, Ignat'eva E S, Sigaev V N, Niederberger M, Lauria A 2015 J. Mater. Chem. C 3 41Google Scholar

    [17]

    Takahashi M, Nakatani T, Iwamoto S, Watanabe T, Inoue M 2006 J. Phys. Condens Matter 18 5745Google Scholar

    [18]

    Oshima Y, Víllora E G, Matsushita Y, Yamamoto S, Shimamura K 2015 J. Appl. Phys. 118 085301Google Scholar

    [19]

    Ge S X, Zheng Z 2009 Solid State Sci. 11 1592Google Scholar

    [20]

    Tsuchiya T, Yusa H, Tsuchiya J 2007 Phys. Rev. B 76 174108Google Scholar

    [21]

    Bermudez V M 2006 Chem. Phys. 323 193Google Scholar

    [22]

    Yamaga M, Víllora E G, Shimamura K, Ichinose N, Honda M 2003 Phys. Rev. B 68 155207Google Scholar

    [23]

    Zacherle T, Schmidt P C, Martin M 2013 Phys. Rev. B 87 235206Google Scholar

    [24]

    Orita M, Hiramatsu H, Ohta H, Hirano M, Hosono H 2002 Thin Solid Films 411 134Google Scholar

    [25]

    Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2012 Appl. Phys. Lett. 100 013504Google Scholar

    [26]

    Dong L, Jia R, Xin B, Zhang Y 2016 J. Vac. Sci. Technol., A 34 060602

    [27]

    Dong L, Jia R, Xin B, Peng B, Zhang Y 2017 Sci. Rep. 7 40160Google Scholar

    [28]

    Tao X T 2019 J. Semicond. 40 010401Google Scholar

    [29]

    Fu B, Jia Z T, Mu W X, Yin Y R, Zhang J, Tao X T 2019 J. Semicond. 40 011804Google Scholar

    [30]

    Mohamed H F, Xia C T, Sai Q L, Cui H Y, Pan M Y, Qi H J 2019 J. Semicond. 40 011801Google Scholar

    [31]

    Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T, Yamakoshi S 2016 Semicond. Sci. Technol. 31 034001Google Scholar

    [32]

    Razeghi M 2002 Proc. IEEE 90 1006Google Scholar

    [33]

    Du X, Mei Z, Liu Z, Guo Y, Zhang T, Hou Y, Zhang Z, Xue Q, Kuznetsov A Y 2009 Adv. Mater. 21 4625Google Scholar

    [34]

    Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2014 Phys. Status Solidi A 211 21Google Scholar

    [35]

    Higashiwaki M, Jessen G H 2018 Appl. Phys. Lett. 112 060401Google Scholar

    [36]

    Villora E G, Arjoca S, Shimamura K, Inomata D, Aoki K 2014 Proc. of SPIE 8987 1

    [37]

    Wellenius P, Suresh A, Foreman J V, Everitt H O, Muth J F 2008 Mater. Sci. Eng. B 146 252Google Scholar

    [38]

    Wellenius P, Suresh A, Muth J F 2008 Appl. Phys. Lett. 92 021111Google Scholar

    [39]

    Vanithakumari S C, Nanda K K 2009 Adv. Mater. 21 3581Google Scholar

    [40]

    Lin C F, Chen K T, Huang K P 2010 IEEE Electron Device Lett. 31 1431Google Scholar

    [41]

    Choi S E, Oh Y T, Ham H K, Kim T W, Heo G S, Park J W, Choi B H, Shin D C 2011 Curr. Appl. Phys. 11 S255

    [42]

    Iizuka K, Morishima Y, Kuramata A, Shen Y J, Tsai C Y, Su Y Y, Liu G, Hsu T C, Yeh J H 2015 Proc. of SPIE 9363 1

    [43]

    Schwebel T, Fleischer M, Meixner H, Kohl C D 1998 Sens. Actuators B 49 46Google Scholar

    [44]

    Kohl D, Ochs T, Geyer W, Fleischer M, Meixner H 1999 Sens. Actuators B 59 140Google Scholar

    [45]

    Ogita M, Saika N, Nakanishi Y, Hatanaka Y 1999 Appl. Surf. Sci. 142 188Google Scholar

    [46]

    Schwebel T, Fleischer M, Meixner H 2000 Sens. Actuators B 65 176Google Scholar

    [47]

    Baban C, Toyoda Y, Ogita M 2005 Thin Solid Films 484 369Google Scholar

    [48]

    Bartic M, Toyoda Y, Baban C I, Ogita M 2006 Jpn. J. Appl. Phys., Part1 45 5186Google Scholar

    [49]

    Feng P, Xue X Y, Liu Y G, Wan Q, Wang T H 2006 Appl. Phys. Lett. 89 112114Google Scholar

    [50]

    Bartic M, Baban C I, Suzuki H, Ogita M, Isai M 2007 J. Am. Ceram. Soc. 90 2879Google Scholar

    [51]

    Liu Z F, Yamazaki T, Shen Y, Kikuta T, Nakatani N, Li Y 2008 Sens. Actuators B 129 666Google Scholar

    [52]

    Arnold S P, Prokes S M, Perkins F K, Zaghloul M E 2009 Appl. Phys. Lett. 95 103102Google Scholar

    [53]

    Lee C T, Yan J T 2010 Sens. Actuators B 147 723Google Scholar

    [54]

    Hou Y, Jayatissa A H 2014 Sens. Actuators B 204 310Google Scholar

    [55]

    Bartic M 2015 Phys. Status Solidi A 211 40

    [56]

    Hayashi H, Huang R, Ikeno H, Oba F, Yoshioka S, Tanaka I, Sonoda S 2006 Appl. Phys. Lett. 89 181903Google Scholar

    [57]

    Pei G, Xia C, Dong Y, Wu B, Wang T, Xu J 2008 Scr. Mater. 58 943Google Scholar

    [58]

    Guo D Y, Wu Z P, An Y H, Li X J, Guo X C, Chu X L, Sun C L, Lei M, Li L H, Cao L X, Li P G, Tang W H 2015 J. Mater. Chem. C 3 1830Google Scholar

    [59]

    Guo D Y, Wu Z P, Li P G, Wang Q J, Lei M, Li L H, Tang W H 2015 RSC Adv. 5 12894Google Scholar

    [60]

    Guo D Y, An Y H, Cui W, Zhi Y S, Zhao X L, Lei M, Li L H, Li P G, Wu Z P, Tang W H 2016 Sci. Rep. 6 25166Google Scholar

    [61]

    Gao X, Xia Y, Ji J, Xu H, Su Y, Li H, Yang C, Guo H, Yin J, Liu Z 2010 Appl. Phys. Lett. 97 193501Google Scholar

    [62]

    Yang J B, Chang T C, Huang J J, Chen S C, Yang P C, Chen Y T, Tseng H C, Sze S M, Chu A K, Tsai M J 2013 Thin Solid Films 529 200Google Scholar

    [63]

    Aoki Y, Wiemann C, Feyer V, Kim H S, Schneider C M, Ill-Yoo H, Martin M 2014 Nat. Commun. 5 3473Google Scholar

    [64]

    Hsu C W, Chou L J 2012 Nano Lett. 12 4247Google Scholar

    [65]

    Lee D Y, Tseng T Y 2011 J. Appl. Phys. 110 114117Google Scholar

    [66]

    Huang J J, Chang T C, Yang J B, Chen S C, Yang P C, Chen Y T, Tseng H C, Sze S M, Chu A K, Tsai M J 2012 IEEE Electron Device Lett. 33 1387Google Scholar

    [67]

    Yang J B, Chang T C, Huang J J, Chen Y T, Yang P C, Tseng H C, Chu A K, Sze S M, Tsai M J 2013 Thin Solid Films 528 26Google Scholar

    [68]

    Guo D Y, Wu Z P, An Y H, Li P G, Wang P C, Chu X L, Guo X C, Zhi Y S, Lei M, Li L H, Tang W H 2015 Appl. Phys. Lett. 106 042105Google Scholar

    [69]

    Guo D Y, Wu Z P, Zhang L J, Yang T, Hu Q R, Lei M, Li P G, Li L H, Tang W H 2015 Appl. Phys. Lett. 107 032104Google Scholar

    [70]

    Guo D Y, Qian Y P, Su Y L, Shi H Z, Li P G, Wu J T, Wang S L, Cui C, Tang W H 2017 AIP Adv. 7 065312Google Scholar

    [71]

    Wang P C, Li P G, Zhi Y S, Guo D Y, Pan A Q, Zhan J M, Liu H, Shen J Q, Tang W H 2015 Appl. Phys. Lett. 107 262110Google Scholar

    [72]

    Gollakota P, Dhawan A, Wellenius P, Lunardi L M, Muth J F, Saripalli Y N 2006 Appl. Phys. Lett. 88 221906Google Scholar

    [73]

    Sawada K, Adachi S 2014 ECS J. Solid State Sci. 3 R238Google Scholar

    [74]

    Kang B K, Mang S R, Lim H D, Song K M, Song Y H, Go D H, Jung M K, Senthil K, Yoon D H 2014 Mater. Chem. Phys. 147 178Google Scholar

    [75]

    Wu Z, Bai G, Hu Q, Guo D, Sun C, Ji L, Lei M, Li L, Li P, Hao J, Tang W 2015 Appl. Phys. Lett. 106 171910Google Scholar

    [76]

    Wu Z, Bai G, Qu Y, Guo D, Li L, Li P, Hao J, Tang W 2016 Appl. Phys. Lett. 108 211903Google Scholar

    [77]

    Li W, Peng Y, Wang C, Zhao X, Zhi Y, Yan H, Li L, Li P, Yang H, Wu Z, Tang W 2017 J. Alloys Compd. 697 388Google Scholar

    [78]

    Orita M, Ohta H, Hirano M, Hosono H 2000 Appl. Phys. Lett. 77 4166Google Scholar

    [79]

    Suzuki N, Ohira S, Tanaka M, Sugawara T, Nakajima K, Shishido T 2007 Phys. Status Solidi C 4 2310Google Scholar

    [80]

    Ou S L, Wuu D S, Fu Y C, Liu S P, Horng R H, Liu L, Feng Z C 2012 Mater. Chem. Phys. 133 700Google Scholar

    [81]

    Du X J, Li Z, Luan C N, Wang W G, Wang M X, Feng X J, Xiao H D, Ma J 2015 J. Mater. Sci. 50 3252Google Scholar

    [82]

    Mi W, Li Z, Luan C N, Xiao H D, Zhao C S, Ma J 2015 Ceram. Int. 41 2572Google Scholar

    [83]

    Minami T, Takeda Y, Kakumu T, Takata S, Fukuda I 1997 J. Vac. Sci. Technol., A 15 958Google Scholar

    [84]

    Kim S, Kim S J, Kim K H, Kim H D, Kim T G 2014 Phys. Status Solidi A 211 2569Google Scholar

    [85]

    Kim S J, Park S Y, Kim K H, Kim S W, Kim T G 2014 IEEE Electron Device Lett. 35 232Google Scholar

    [86]

    Woo K Y, Lee J H, Kim K H, Kim S J, Kim T G 2014 Phys. Status Solidi A 211 1760Google Scholar

    [87]

    Zhuang H H, Yan J L, Xu C Y, Meng D L 2014 Appl. Surf. Sci. 307 241Google Scholar

    [88]

    Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972Google Scholar

    [89]

    Oshima T, Okuno T, Arai N, Suzuki N, Hino H, Fujita S 2009 Jpn. J. Appl. Phys. 48 011605Google Scholar

    [90]

    Oshima T, Okuno T, Fujita S 2007 Jpn. J. Appl. Phys. 46 7217Google Scholar

    [91]

    Feng P, Zhang J Y, Li Q H, Wang T H 2006 Appl. Phys. Lett. 88 153107Google Scholar

    [92]

    Weng W Y, Hsueh T J, Chang S J, Huang G J, Chang S P 2010 IEEE Photonics Technol. Lett. 22 709Google Scholar

    [93]

    Wu Y L, Chang S J, Weng W Y, Liu C H, Tsai T Y, Hsu C L, Chen K C 2013 IEEE Sens. J. 13 2368Google Scholar

    [94]

    Li L, Auer E, Liao M, Fang X, Zhai T, Gautam U K, Lugstein A, Koide Y, Bando Y, Golberg D 2011 Nanoscale 3 1120Google Scholar

    [95]

    Tian W, Zhi C, Zhai T, Chen S M, Wang X, Liao M Y, Golberg D, Bando Y 2012 J. Mater. Chem. 22 17984Google Scholar

    [96]

    Feng W, Wang X N, Zhang J, Wang L, Zheng W, Hu P, Cao W, Yang B 2014 J. Mater. Chem. C 2 3254Google Scholar

    [97]

    Teng Y, Song L X, Ponchel A, Yang Z K, Xia J 2014 Adv. Mater. 26 6238Google Scholar

    [98]

    Zou R J, Zhang Z Y, Liu Q, Hu J Q, Sang L W, Liao M Y, Zhang W J 2014 Small 10 1848Google Scholar

    [99]

    Zhong M Z, Wei Z M, Meng X Q, Wu F, Li J 2015 J. Alloys Compd. 619 572Google Scholar

    [100]

    Zhao B, Wang F, Chen H Y, Wang Y P, Jiang M M, Fang X S, Zhao D X 2015 Nano Lett. 15 3988Google Scholar

    [101]

    Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D, Fang X 2017 Adv. Funct. Mater. 27 1700264Google Scholar

    [102]

    Chen X, Liu K, Zhang Z, Wang C, Li B, Zhao H, Zhao D, Shen D 2016 ACS Appl. Mater. Interfaces 8 4185Google Scholar

    [103]

    Oh S, Kim J, Ren F, Pearton S J, Kim J 2016 J. Mater. Chem. C 4 9245Google Scholar

    [104]

    Kwon Y, Lee G, Oh S, Kim J, Pearton S J, Ren F 2017 Appl. Phys. Lett. 110 131901Google Scholar

    [105]

    Oh S, Mastro M A, Tadjer M J, Kim J 2017 ECS J. Solid State. Sci. 6 Q79Google Scholar

    [106]

    Oh S, Kim C K, Kim J 2017 ACS Photonics 5 1123

    [107]

    Du J, Xing J, Ge C, Liu H, Liu P, Hao H, Dong J, Zheng Z, Gao H 2016 J. Phys. D: Appl. Phys. 49 425105Google Scholar

    [108]

    He T, Zhao Y, Zhang X, Lin W, Fu K, Sun C, Shi F, Ding X, Yu G, Zhang K, Lu S, Zhang X, Zhang B 2018 Nanophotonics 7 1557Google Scholar

    [109]

    Oshima T, Okuno T, Arai N, Suzuki N, Ohira S, Fujita S 2008 Appl. Phys. Express 1 011202Google Scholar

    [110]

    Suzuki R, Nakagomi S, Kokubun Y, Arai N, Ohira S 2009 Appl. Phys. Lett. 94 222102Google Scholar

    [111]

    Suzuki R, Nakagomi S, Kokubun Y 2011 Appl. Phys. Lett. 98 131114Google Scholar

    [112]

    Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D, Luo L B 2016 Adv. Mater. 28 10725Google Scholar

    [113]

    Mu W, Jia Z, Yin Y, Hu Q, Zhang J, Feng Q, Hao Y, Tao X 2017 CrystEngComm 19 5122Google Scholar

    [114]

    Yang C, Liang H, Zhang Z, Xia X, Tao P, Chen Y, Zhang H, Shen R, Luo Y, Du G 2018 RSC Adv. 8 6341Google Scholar

    [115]

    Ji Z, Du J, Fan J, Wang W 2006 Opt. Mater. 28 415Google Scholar

    [116]

    Kokubun Y, Miura K, Endo F, Nakagomi S 2007 Appl. Phys. Lett. 90 031912Google Scholar

    [117]

    Weng W Y, Hsueh T J, Chang S J, Huang G J, Hsueh H T 2011 IEEE Sens. J. 11 999Google Scholar

    [118]

    Huang Z D, Weng W Y, Chang S J, Chiu C, Wu S, Hsueh T 2013 IEEE Sens. J. 13 3462Google Scholar

    [119]

    Huang Z D, Weng W Y, Chang S J, Hua Y F, Chiu C J, Hsueh T J, Wu S L 2013 IEEE Sens. J. 13 1187Google Scholar

    [120]

    Huang Z D, Weng W Y, Chang S J, Hua Y F, Chiu C J, Tsai T Y 2013 IEEE Photonics Technol. Lett. 25 809

    [121]

    Nakagomi S, Momo T, Takahashi S, Kokubun Y 2013 Appl. Phys. Lett. 103 072105Google Scholar

    [122]

    Ravadgar P, Horng R H, Yao S D, Lee H Y, Wu R, Ou S L, Tu L W 2013 Opt. Express 21 24599Google Scholar

    [123]

    Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar

    [124]

    Wang X, Chen Z W, Guo D Y, Zhang X, Wu Z P, Li P G, Tang W H 2018 Opt. Mater. Express 8 2918Google Scholar

    [125]

    Peng Y K, Zhang Y, Chen Z W, Guo D Y, Zhang X, Li P G, Wu Z P, Tang W H 2018 IEEE Photonics Technol. Lett. 30 993Google Scholar

    [126]

    Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar

    [127]

    Guo D Y, Li P G, Wu Z P, Cui W, Zhao X L, Lei M, Li L H, Tang W H 2016 Sci. Rep. 6 24190Google Scholar

    [128]

    Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Wang S L, Li P G, Zhang X H, Tang W H 2017 Mater. Lett. 209 558Google Scholar

    [129]

    Guo D Y, Qin X Y, Lv M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W H 2017 Electron. Mater. Lett. 13 483Google Scholar

    [130]

    Zhao X L, Cui W, Wu Z P, Guo D Y, Li P G, An Y H, Li L H, Tang W H 2017 J. Electron. Mater. 46 2366Google Scholar

    [131]

    Zhao X L, Wu Z P, Cui W, Zhi Y S, Guo D Y, Li L H, Tang W H 2017 ACS Appl. Mater. Interfaces 9 983Google Scholar

    [132]

    Zhao X L, Wu Z P, Guo D Y, Cui W, Li P G, An Y H, Li L H, Tang W H 2016 Semicond. Sci. Technol. 31 065010Google Scholar

    [133]

    Zhao X L, Zhi Y S, Cui W, Guo D Y, Wu Z P, Li P G, Li L H, Tang W H 2016 Opt. Mater. 62 651Google Scholar

    [134]

    Zhao X L, Wu Z P, Zhi Y S, An Y H, Cui W, Li L H, Tang W H 2017 J. Phys. D: Appl. Phys. 50 085102Google Scholar

    [135]

    Zhang M, Liu G H, Gu X H, Zhou J R 2014 Journal of Nanoscience and Nanotechnology 14 3827Google Scholar

    [136]

    Li W H, Zhao X L, Zhi Y S, Zhang X H, Chen Z W, Chu X L, Yang H J, Wu Z P, Tang W H 2018 Appl. Opt. 57 538Google Scholar

    [137]

    Guo D Y, Zhao X L, Zhi Y S, Cui W, Huang Y Q, An Y H, Li P G, Wu Z P, Tang W H 2016 Mater. Lett. 164 364Google Scholar

    [138]

    Ai M L, Guo D Y, Qu Y Y, Cui W, Wu Z P, Li P G, Li L H, Tang W H 2017 J. Alloys Compd. 692 634Google Scholar

    [139]

    An H Y, Chu X L, Huang Y Q, Zhi Y S, Guo D Y, Li P G, Wu Z P, Tang W H 2016 Prog. Nat. Sci. 26 65Google Scholar

    [140]

    Cui W, Guo D Y, Zhao X L, Wu Z P, Li P G, Li L H, Cui C, Tang W H 2016 RSC Adv. 6 100683Google Scholar

    [141]

    Huang Y Q, An Y H, Wu Z P, Guo D Y, Zhi Y S, Cui W, Zhao X L, Tang W H 2017 J. Alloys Compd. 717 8Google Scholar

    [142]

    Guo D Y, Liu H, Li P G, Wu Z P, Wang S L, Cui C, Li C R, Tang W H 2017 ACS Appl. Mater. Interfaces 9 1619Google Scholar

    [143]

    Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M, Tang W H 2016 J. Alloys Compd. 660 136Google Scholar

    [144]

    Guo D Y, Shi H Z, Qian Y P, Lv M, Li P G, Su Y L, Liu Q, Chen K, Wang S L, Cui C, Li C R, Tang W H 2017 Semicond. Sci. Technol. 32 03LT1

    [145]

    Wu Z P, Jiao L, Wang X L, Guo D Y, Li W H, Li L H, Huang F, Tang W H 2017 J. Mater. Chem. C 5 8688Google Scholar

    [146]

    Li P G, Shi H Z, Chen K, Guo D Y, Cui W, Zhi Y S, Wang S L, Wu Z P, Chen Z W, Tang W H 2017 J. Mater. Chem. C 5 10562Google Scholar

    [147]

    Guo D Y, Su Y L, Shi H Z, Li P G, Zhao N, Ye J H, Wang S L, Liu A P, Chen Z W, Li C R, Tang W H 2018 ACS Nano 12 12827Google Scholar

    [148]

    An H Y, Zhi Y S, Wu Z P, Cui W, Zhao X L, Guo D Y, Li P G, Tang W H 2016 Appl. Phys. A 122 1036Google Scholar

    [149]

    Qu Y Y, Wu Z P, Ai M L, Guo D Y, An Y H, Yang H J, Li L H, Tang W H 2016 J. Alloys Compd. 680 247Google Scholar

    [150]

    An Y H, Guo D Y, Li S Y, Wu Z P, Huang Y Q, Li P G, Li L H, Tang W H 2016 J. Phys. D: Appl. Phys. 49 285111Google Scholar

    [151]

    Cui W, Zhao X L, An Y H, Guo D Y, Qing X Y, Wu Z P, Li P G, Li L H, Cui C, Tang W H 2017 J. Phys. D: Appl. Phys. 50 135109Google Scholar

    [152]

    Guo P, Xiong J, Zhao X H, Sheng T, Yue C, Tao B W, Liu X Z 2014 J. Mater. Sci. 25 3629

    [153]

    Hu G C, Shan C X, Zhang N, Jiang M M, Wang S P, Shen D Z 2015 Opt. Express 23 13554Google Scholar

    [154]

    Sheng T, Liu X Z, Qian L X, Xu B, Zhang Y Y 2015 Rare Met.Google Scholar

    [155]

    Yu F P, Ou S L, Wuu D S 2015 Opt. Mater. Express 5 1240Google Scholar

    [156]

    Liu X Z, Guo P, Sheng T, Qian L X, Zhang W L, Li Y R 2016 Opt. Mater. 51 203Google Scholar

    [157]

    Qian L X, Liu X Z, Sheng T, Zhang W L, Li Y R, Lai P T 2016 AIP Adv. 6 045009Google Scholar

    [158]

    Liu X Z, Yue C, Xia C T, Zhang W L 2016 Chin. Phys. B 25 017201Google Scholar

    [159]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [160]

    Feng Q, Huang L, Han G, Li F, Li X, Fang L, Xing X, Zhang J, Mu W, Jia Z, Guo D, Tang W, Tao X, Hao Y 2016 IEEE Trans. Electron Devices 63 3578Google Scholar

    [161]

    Feng Z Q, Huang L, Feng Q, Li X, Zhang H, Tang W H, Zhang J C, Hao Y 2018 Opt. Mater. Express 8 2229Google Scholar

    [162]

    Huang L, Feng Q, Han G Q, Li F G, Li X, Fang L W, Xing X Y, Zhang J C, Hao Y 2017 IEEE Photonics J. 9 6803708

    [163]

    Zhang K, Feng Q, Huang L, Hu Z Z, Feng Z Q, Li A, Zhou H, Lu X L, Zhang C F, Zhang J C, Hao Y 2018 IEEE Photonics J. 10 6802508

    [164]

    Feng Q, Li X, Han G, Huang L, Li F, Tang W, Zhang J, Hao Y 2017 Opt. Mater. Express 7 1240Google Scholar

    [165]

    Xu Y, An Z Y, Zhang L X, Feng Q, Zhang J C, Zhang C F, Hao Y 2018 Opt. Mater. Express 8 2941Google Scholar

    [166]

    Ahn S, Lin Y H, Ren F, Oh S, Jung Y, Yang G, Kim J, Mastro M A, Hite J K, Eddy C R, Pearton S J 2016 J. Vac. Sci. Technol. B 34 041213Google Scholar

    [167]

    Ahn S, Ren F, Oh S, Jung Y, Kim J, Mastro M A, Hite J K, Eddy C R, Pearton S J 2016 J. Vac. Sci. Technol. B 34 041207Google Scholar

    [168]

    Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H, Schoenfeld W V 2017 Phys. Status Solidi A 1 1600688

    [169]

    Cui S, Mei Z, Zhang Y, Liang H, Du X 2017 Adv. Opt. Mater. 17 00454

    [170]

    Cui S J, Mei Z. X, Hou Y N, Chen Q S, Liang H L, Zhang Y H, Huo W X, Du X L 2018 Chin. Phys. B 27 067301Google Scholar

    [171]

    Lee S H, Kim S B, Moon Y J, Kim S M, Jung H J, Seo M S, Lee K M, Kim S K, Lee S W 2017 ACS Photonics 4 2937Google Scholar

    [172]

    Chen X H, Xu Y, Zhou D, Yang S, Ren F F, Lu H, Tang K, Gu S L, Zhang R, Zheng Y D, Ye J D 2017 ACS Appl. Mater. Interfaces 9 36997Google Scholar

    [173]

    Patil-Chaudhari D, Ombaba M, Oh J Y, Mao H, Montgomery K H, Lange A, Mahajan S, Woodall J M, Islam M S 2017 IEEE Photonics J. 9 2300207

    [174]

    Rafique S, Han L, Zhao H P 2017 Phys. Status Solidi A 214 1700063Google Scholar

    [175]

    Pratiyush A S, Krishnamoorth S, Solanke S V, Xia Z B, Muralidharan R, Rajan S, Nath D N 2017 Appl. Phys. Lett. 110 221107Google Scholar

    [176]

    Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J, Huang F 2018 J. Alloys Compd. 735 150Google Scholar

    [177]

    Lin R C, Zheng W, Zhang D, Zhang Z, Liao Q, Yang L, Huang F 2018 ACS Appl. Mater. Interfaces 10 22419Google Scholar

    [178]

    Jaiswal P, Muazzam U U, Pratiyush A S, Mohan N, Raghavan S, Muralidharan R, Shivashankar S A, Nath D N 2018 Appl. Phys. Lett. 112 021105Google Scholar

    [179]

    Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L, Shan C X 2018 J. Mater. Chem. C 6 5727Google Scholar

    [180]

    Arora K, Goel N, Kumar M, Kumar M 2018 ACS Photonics 5 2391Google Scholar

    [181]

    Shen H, Yin Y, Tian K, Baskaran K, Duan L, Zhao X, Tiwari A 2018 J. Alloys Compd. 766 601Google Scholar

  • 图 1  Ga2O3几个同分异构体的晶体结构

    Fig. 1.  Crystal structures of several isomers of Ga2O3

    图 2  Ga2O3各同分异构体的相互转换关系[4]

    Fig. 2.  Interconversion relation of Ga2O3 isomers[4]

    图 3  β-Ga2O3的晶体结构及晶格常数[2123]

    Fig. 3.  Crystal structure and lattice constant of β-Ga2O3[2123]

    图 4  β-Ga2O3材料具有的物理性质及其对应的器件应用

    Fig. 4.  Physical properties and device applications of β-Ga2O3 material

    图 5  (a)在不同温度下制备获得的Sn掺杂β-Ga2O3薄膜的透过率[75]; (b) Sn掺杂β-Ga2O3薄膜的导电率随沉积温度的变化关系[24]

    Fig. 5.  (a) The transmittance of Sn-doped-Ga2O3 thin films prepared at different temperatures[75]; (b) the relationship between the conductivity of Sn doped -Ga2O3 thin films and the deposition temperature[24]

    图 6  Sn掺杂Ga2O3薄膜的透过率和带隙(a)[81]及电阻率(b)[82]随Sn掺杂浓度的变化关系

    Fig. 6.  The relationship of the transmittance (a)[81], the band gap (a)[81], the resistivity (b)[82] with Sn different doping concentration in Sn-doped Ga2O3 thin films

    图 7  ITO与Ga2O3:ITO薄膜性能对比 (a)光输出功率–电流–电压特征曲线; (b)近紫外LED的电致发光光谱[85]

    Fig. 7.  (a) Current versus light output power and forward voltage (L-I-V) characteristic curves and (b) typical electroluminescence spectra measured for near-ultraviolet LEDs with Ga2O3:ITO and ITO transparent conducting electrodes; the inset shows top-view SEM image of near-ultraviolet[85]

    图 8  Au-Ga2O3纳米线-Au光电探测器 (a)黑暗情况下的I–V特性曲线及其器件结构SEM图(插图); (b)–8 V偏压下对254 nm光的I–t响应特性曲线[91]

    Fig. 8.  Au-Ga2O3 nanowire-Au photodetector: (a) I-V characteristic curve of the detector in dark. The inset of is a typical SEM image of the device, the scale bar: 200 nm; (b) real-time photoresponse of the detector to 254 nm light[91]

    图 9  β-Ga2O3纳米桥光电探测器的日盲光电性质 (a) 器件的结构示意图; (b) 50 V偏压下对254 nm光的I–t响应特性; (c) 黑暗及对365和254 nm光响应的I–V特性曲线; (d) 不同波长的光谱响应特性[88]

    Fig. 9.  Solar blind photoelectric properties of photodetector based on the bridged β-Ga2O3 nanowires: (a) Schematic diagram of the devices; (b) time-dependent photoresponse of the bridged β-Ga2O3 nanowires measured in dry air under UVC (~2 mW cm–2 at 254 nm) illumination with a period of 60 s at a bias voltage of 50 V; (c) I-V characteristics of the bridged β-Ga2O3 nanowires in dark (squares), under 365 nm light (triangles), and under 254 nm light (circles). The I-V curve measured under 254 nm light is plotted on a linear scale in the inset; (d) spectral response of the bridged β-Ga2O3 nanowires revealing that the device is blind to solar light. The dashed line indicates the lowest wavelength of the solar spectrum on Earth[88]

    图 10  (a) Ga2O3纳米线光电探测器在不同偏压下的光谱响应[92]; (b)在Cr/Au电极上生长获得的Ga2O3纳米线光电探测器结构[93]; (c)不同温度下生长的Ga2O3纳米线对255 nm光的I–t响应曲线[93]; (d)不同偏压下的光谱响应[93]

    Fig. 10.  (a) Room-temperature spectral responses of the Ga2O3 nanowires photodetector measured with different applied biases[92]; (b) Ga2O3 nanowire photodetector with Cr/Au as electrodes[93]; (c) transit responses measured from the three fabricated photodetectors grown at different temperatures[93]; (d) room-temperature spectral responses of the photodetector under different bias[93]

    图 11  (a)单条Ga2O3纳米带光电探测器的SEM图[94]; (b)不同带宽Ga2O3纳米带的光谱响应, 插图为探测器结构[94]; (c) In掺杂的Ga2O3单条纳米带光电探测器的光谱响应[95]; (d)纯Ga2O3和In:Ga2O3单条纳米带黑暗情况及在250 nm光照下的I–V曲线[95]

    Fig. 11.  (a) SEM image of a Ga2O3 individual-nanobelt device[94]; (b) spectral response of the devices (nanobelts with different widths of 800 nm and 1.6 mm) measured at a bias of 15 V. The schematic configuration of a photoconductive measurement is inserted in the top-right corner[94]; (c) spectral response of an individual In-doped Ga2O3 nanobelt photodetector. The inset is a typical SEM image of an individual In-doped Ga2O3 nanobelt device[95]; (d) logarithmic plot of I-V curves of the individual Ga2O3 and In-doped Ga2O3 nanobelt photodetector under illumination with the 250 nm wavelength light and in dark conditions[95]

    图 12  (a) Ga2O3纳米花的SEM图; (b) Ga2O3纳米花对254 nm光的I–t响应曲线[97]

    Fig. 12.  (a) SEM image of Ga2O3 nanoflowers; (b) I-t response curve of Ga2O3 nanoflowers to 254 nm light[97]

    图 13  ZnO/Ga2O3核/壳结构的日盲紫外探测器 (a)器件示意图; (b)黑暗和254 nm光照下的I–V特征曲线; (c)–6 V偏压下的光谱响应[100]; (d)0 V偏压下的光谱响应; (e)光电流衰减[101]. Au/Ga2O3纳米线Schottky型垂直结构的光电探测器 (f)器件示意图; (g)光谱响应; (h)光电流衰减[102]

    Fig. 13.  Solar-blind ultraviolet photodetector based on Single ZnO-Ga2O3 core-shell microwire ZnO/Ga2O3 core-shell: (a) Device schematic diagram; (b)I-V characteristic curve in dark and under 254 nm light; (c) spectral response of the device at −6 V bias[100]; (d) the photoresponse spectrum of the device at 0 V; (e) the time response under the excitation of 266 nm pulse laser at 0 V[101]. Au/Ga2O3 nanowire Schottky vertical structure photodetector: (f) device schematic diagram; (g) spectral responses of the device at zero bias and under reverse bias of 10 V. Inset shows the responsivity of photodetectors at the wavelength of 254 nm as a function of reverse bias; (h) decay edge of the current response at reverse bias of 10 V[102].

    图 14  基于β-Ga2O3薄片的日盲紫外探测器 (a)机械剥离获得β-Ga2O3微米薄片及器件制作流程示意图; (b)器件的光学照片; (c)不同波长光照下的器件的I–t响应曲线; (d) 光谱响应曲线[103]; (e) β-Ga2O3微米薄片的反应离子刻蚀减薄[104]; (f) Ni/Au电极与β-Ga2O3薄片构成的MSM结构肖特基结日盲紫外探测器在不用波长下的I–V曲线; (g)能带结构示意图[105]; (h), (i)石墨烯电极与β-Ga2O3薄片构成的MSM结构日盲紫外探测器的SEM图[106]

    Fig. 14.  Solar-blind ultraviolet photodetector based on β-Ga2O3 flake: (a) Schematic of the entire exfoliated β-Ga2O3 flake based photodetector fabrication process; (b) optical image of the fabricated photodetector; (c) time-dependent photoresponse of the fabricated photodetector under various illumination conditions (254, 365, 532 and 650 nm light exposure); (d) responsivity as a function of wavelength[103]; (e) the reactive ion etching assisted thinning of a β-Ga2O3 flake[104]; (f) the I-V curve; (g) energy band structure diagram of the schottky junction MSM structure solar-blind ultraviolet photodetector based on Ni/Au electrodes and β-Ga2O3 flake under different wavelengths[105]; (h), (i) the SEM image of the MSM structure solar-blind ultraviolet photodetector based on graphene electrode and β-Ga2O3 flake[106]

    图 15  垂直结构肖特基型β-Ga2O3单晶日盲紫外探测器 (a)制作过程[109]; (b)光谱响应[109]; (c)实物图[89]; (d)瞬态光响应[89]

    Fig. 15.  Vertical solar-blind deep-ultraviolet schottky photodetectors based onβ-Ga2O3 substrates: (a) Fabrication process for photodetector[109]; (b) spectral responser[109]; (c) photograph of the flame detector. The dashed circles are on the edges of the transparent electrodes[89]; (d) transient response of the detector[89]

    图 16  (a) β-Ga2O3单晶与Au电极在不同温度下退火后的I–V曲线[110]; (b)未退火和400℃下退火后Au/β-Ga2O3单晶肖特基型光电探测器的光谱响应[110]; (c)在β-Ga2O3单晶上采用溶胶凝胶法制备高绝缘β-Ga2O3薄膜并与Au电极构成的光电探测器[111]; (d)有无高绝缘β-Ga2O3薄膜层的光谱响应对比图[111]

    Fig. 16.  (a) Dark I-V characteristics of the Au-Ga2O3 Schottky photodiode annealed at various temperatures. The inset shows the device configuration[110]; (b) spectral response of the Au-Ga2O3 Schottky photodiode before and after annealing at 400℃. The inset shows the reverse I-V characteristics of the photodiode annealed at 400℃ taken in dark and under illumination with 240 nm light[110]; (c) schematic structure of a photodiode composed of a Au Schottky contact and a β-Ga2O3 single-crystal substrate with a sol-gel prepared cap layer.[111]; (d) spectral response of Ga2O3 photodiodes with and without a cap layer at reverse and forward biases of 3 V. The inset shows the incident light intensity dependence of the photocurrent at forward and reverse biases of 3 V under illumination with 250 nm light[111]

    图 17  石墨烯/β-Ga2O3单晶日盲紫外探测器[112] (a)器件结构示意图; (b)黑暗及365 nm光照下的I–V曲线; (c)光谱响应; (d)能带结构示意图

    Fig. 17.  Solar-blind ultraviolet photodetectors based on graphene/β-Ga2O3 single crystal heterojunction[112]: (a) Schematic diagram of device structure; (b) I-V characteristics of the photodetectors in dark and under 365 nm light irradiation; (c) normalized spectral selectivity; (b) energy band diagram at forward bias voltage

    图 18  (a) Ga2O3薄膜的面内XRD图; (b) Ga2O3薄膜在黑暗及不同光照下的I–V曲线[90]

    Fig. 18.  (a) In-plane XRD measurement results for the Ga2O3 film; (b) I-V characteristics of the Ga2O3 film photodetector in the dark, under black light irradiation, and under low-pressure mercury lamp irradiation[90]

    图 19  (a) Ga2O3/GaN光电探测器结构; (b) Ga2O3/GaN光电探测器在不同偏压下的光谱响应[117]; (c) Ga2O3/AlGaN/GaN光电探测器结构; (d) Ga2O3/AlGaN/GaN光电探测器在不同偏压下的光谱响应[118]; (e) Ga2O3/InGaN/GaN光电探测器结构; (f) Ga2O3/InGaN/GaN光电探测器在不同偏压下的光谱响应[119]; (g)有无Au纳米颗粒与Ga2O3界面形成的能带结构示意图; (h) Au纳米颗粒/Ga2O3光电探测器在不同偏压下的光谱响应[120]

    Fig. 19.  Schematic diagram (a) and spectral responses under different bias (b) of Ga2O3/GaN photodetector[117]; Schematic diagram (c) and spectral responses under different bias (d) of Ga2O3/AlGaN/GaN photodetector[118]; Schematic diagram (e) and spectral responses under different bias (f) of Ga2O3/InGaN/GaN photodetector[119]; Energy band diagram of area near the surface of β-Ga2O3 and Au in the dark (g), spectral responses under different bias of Ga2O3/GaN-based metal-semiconductor-metal photodetectors covered with Au nanoparticles (h)[120]

    图 20  (a) Ga2O3/SiC光电探测器结构; (b) Ga2O3/SiC光电探测器在2 V反偏压下的光谱响应[121]

    Fig. 20.  Schematic diagram (a) and spectral responses under 2 V reverse bias (b) of SiC/Ga2O3 photodetector[121]

    图 21  (a) Ga2O3薄膜MSM结构日盲紫外探测器的结构示意图[123]; (b) MSM结构中Ga2O3薄膜厚度对探测器光暗比的影响[124]; (c), (d) MSM结构阵列探测器[125]; (e)氧气氛退火处理构成的肖特基结与未退火欧姆接触MSM结构探测器的I–t曲线[126]. 不同元素掺杂Ga2O3薄膜MSM结构探测器的I–t曲线 (f) Mg掺杂[128]; (g) Mn掺杂[127]; (h) Zn掺杂[129]; (i) Sn掺杂[130]

    Fig. 21.  (a) Schematic diagram of the β-Ga2O3 thin film MSM structure photodetector[123; (b) the effect of Ga2O3 film thickness on light-dark ratio of the MSM structure photodetector[124]; (c), (d) MSM structure arrays photodetector[125]; (e)I-t curves of the β-Ga2O3 thin films MSM structure photodetector with unannealed (Ohmic-type up) and annealed treatment in O2 atmosphere (Schottky-type, down), respectively[126]. I-t curves of the MSM structure photodetector based on β-Ga2O3 thin films doped with different element: (f) Mg doped[128]; (g) Mn doped[127]; (h) Zn doped[129]; (i) Sn doped[130]

    图 22  石墨烯/Ga2O3/石墨烯垂直结构日盲紫外探测器的结构示意图[138](a)及其不同偏压下对254 nm紫外光的响应度(b)[138]; 纯Ga2O3及表面附着有Au纳米颗粒Ga2O3薄膜的紫外可见吸收(c)[139]和不同光照下的I–V曲线(d)[139]; 引入Al2O3薄层生长获得的Ga2O3薄膜/纳米线SEM图(e)[140]和不同光照下的I–V曲线(f)[140]

    Fig. 22.  Schematic diagram (a) [138] and photoresponses to 254 nm ultraviolet light under different bias (b) [138] of graphene/Ga2O3/graphene vertical structure photodetector; UV-vis absorbance spectrum (c) [139] and I-V cures under the different wavelength light illumination (d) [139] of the bare Ga2O3 thin film and Au nanoparticles/Ga2O3 composite thin film; SEM image (e) and I-V cures under the different wavelength light illumination (f) [140] of Ga2O3 thin film/nanowire grown induced by Al2O3 thin layer[140]

    图 23  Ga2O3/NSTO异质结自供电探测器的结构示意图(a)[142] 、黑暗及254 nm不同光强下的I–V曲线(b)[142]和异质结界面处光生载流子输运的能带结构示意图(c)[142]; Ga2O3/P-Si PN结探测器的结构示意图(d)[143]; Ga2O3/Ga:ZnO异质结探测器的整流特性及结构示意图(e)[145]和光谱响应(f)[145]; Ga2O3/GaN PN结探测器的结构示意图(g)[146]和黑暗及不同波长光照下的I–V曲线(h)[146]; Sn:Ga2O3/GaN PN结探测器的光谱响应(i)[144]和不同波长光照下的I–t曲线(j)[147]; Ga2O3/SiC/P-Si PIN结(k)[148]和石墨烯/Ga2O3/SiC探测器的结构示意图(l)[149]

    Fig. 23.  Schematic diagram (a) [142], I-V cures in dark and under 254 nm with different light intensity illumination (b) [142], and schematic energy band diagrams (c) [142] of the β-Ga2O3/NSTO heterojunction self-powered photodetector; Schematic diagram of Ga2O3/P-Si PN junction detector (d) [143]; Rectifier features (e), schematic diagram (e) and spectral response (f) of the Ga2O3/Ga:ZnO heterojunction photodetector[145]; Schematic diagram (g) [145], I-V cures in dark and under the different wavelength light illumination (h) [146]; Spectral response (i) and I-t cures under the different wavelength light illumination (j) of the Sn:Ga2O3/GaN PN junction photodetector[145]; Schematic diagram of Ga2O3/SiC/P-Si PIN junction photodetector (k) [148]and graphene/Ga2O3/SiC photodetector (l)[149]

    图 24  a-GaOx非晶薄膜和β-Ga2O3薄膜日盲紫外探测器[159] (a) MSM结构示意图; (b)光谱响应; (c)能带结构示意图

    Fig. 24.  Solar-blind ultraviolet photodetector based on a-GaOx amorphous film and β-Ga2O3 film[159]: (a) MSM structure diagram; (b) spectral response; (c) energy band structure diagram

    图 25  MSM结构日盲紫外探测器 (a) MSM结构示意图[160]; (b) Ga2O3单晶和薄膜的光谱响应对比[160]; (c) MSM结构[162]; (d) Ga2O3薄膜不同气氛退火的光谱响应对比[161]; (e)不同氧压下生长的Ga2O3薄膜的光谱响应对比[162]; (f)不同In掺杂的Ga2O3薄膜的光谱响应对比图[163]

    Fig. 25.  MSM structure solar-blind ultraviolet photodetector: (a) Schematic diagram of MSM structure[160]; (b) spectral response comparison of Ga2O3 single crystal and thin film[160]; (c) MSM structure[162]; (d) spectral response comparison of Ga2O3 thin films annealed in different atmospheres[161]; (e) spectral response comparison of Ga2O3 thin films grown under different oxygen pressures[162]; (f) spectral response comparison of Ga2O3 thin films doped with different concentrations of In elements[163]

    图 26  a-Ga2O3非晶薄膜日盲紫外探测器[169] (a)以石英为衬底的器件结构示意图; (b)光谱响应; (c)光衰减测试; (d)以柔性为衬底的器件结构示意图

    Fig. 26.  Solar-blind ultraviolet photodetector based on a-Ga2O3 amorphous film[169]: (a) Schematic diagram of device structure with quartz substrate; (b) spectral response; (c) the decay of photoresponse; (d) schematic diagram of device structure with flexible substrate

    图 27  a-GaOx非晶薄膜日盲紫外探测器[171] (a)以玻璃为衬底的器件结构示意图; (b)黑暗和253 nm光照下的I–V曲线; 以聚酰亚胺为衬底的器件结构示意图(c)及黑暗和253 nm光照下的I–V曲线(d)

    Fig. 27.  Solar-blind ultraviolet photodetector based on a-Ga2O3 amorphous film[171]: Schematic diagram of device structure with glass substrate (a) and I-V cures in dark and under the illumination of 253 nm light (b); Schematic diagram of device structure with polyimide substrate (c) and I-V cures in dark and under the illumination of 253 nm light (d)

    图 28  α-Ga2O3/ZnO异质结日盲紫外探测器[172] (a)光谱响应; (b)增益随偏压的变化; (c)瞬态光响应特性; (d)能带结构及器件结构示意图

    Fig. 28.  Solar-blind ultraviolet photodetector based on α-Ga2O3/ZnO heterojunction[172] : (a) Spectral response; (b) variation of gain with bias; (c) transient photoresponse characteristics; (d) schematic diagram of energy band structure and device structure

    图 29  以N2O为反应气体获得的β-Ga2O3薄膜日盲紫外探测器 (a)生长原理示意图[176]; (b)黑暗和255 nm光照下的I–V曲线及MSM结构示意图[176]; (c)光谱响应及不同偏压下的光响应度[176]; (d)石墨烯/β-Ga2O3/GaN器件结构示意图[177]; (e)光谱响应[177]; (f)能带结构示意图[177]

    Fig. 29.  Solar-blind ultraviolet photodetector based on β-Ga2O3 thin film grown using N2O as the reaction gas: (a) Schematic diagram of growth principle[176]; (b) I-V cures in dark and under 255 nm light illumination, and schematic diagram of MSM structure[176]; (c) spectral response and photoresponsivity under different bias[176]; (d) schematic diagram of graphene/β-Ga2O3/GaN devices[177]; (e) spectral response[177]; (f) energy band structure diagram[177]

    表 1  β-Ga2O3与主流半导体材料的基本物性比较[25]

    Table 1.  Comparison of basic physical properties of β-Ga2O3 with mainstream semiconductor materials[25]

    材料 Si GaAs GaP 4H-SiC ZnO GaN ß-Ga2O3 Diamond AlN MgO
    带隙Eg/eV 1.1 1.43 2.27 3.3 3.35 3.4 4.2—4.9 5.5 6.2 7.8
    迁移率${\text{μ}}$/cm2·Vs–1 1400 8500 350 1000 200 1200 300 2000 135
    击穿电场强度Eb/MV·cm–1 0.3 0.6 1.0 2.5 3.3 8 10 2
    相对介电常数ε 11.8 12.9 11.1 9.7 8.7 9 10 5.5 8.5 9.9
    导热率/W·cm–1·K–1 1.5 0.55 1.1 2.7 0.6 2.1 0.23[010] 0.13[100] 10 3.2
    巴利加优值/$\varepsilon {\text{μ}} {E_{\rm{b}}}^3$ 1 15 340 870 3444 24664
    下载: 导出CSV

    表 2  Ga2O3基透明导电电极薄膜的各参数指标汇总

    Table 2.  Parameters and indicators of Ga2O3-based transparent conductive electrode films

    薄膜类型 电导率/S·cm–1 面电阻/Ω·sq–1 载流子浓度/cm–3 迁移率/cm2·V–1·s–1 透过率/% 参考文献
    Ga2O3薄膜 7.6 - - - 85 [80]
    Sn:Ga2O3薄膜 1 - 1.4 × 1019 0.44 80 [78]
    Sn:Ga2O3薄膜 8.2 - - < 0.44 80 [24]
    Sn:Ga2O3薄膜 8.3 - - 12.03 85 [81]
    Sn:Ga2O3薄膜 32.3 - 2.4 × 1020 0.74 88 [82]
    Sn:Ga2O3单晶 23.4 - 2.3 × 1018 64.7 85 [79]
    (Ga, In)2O3薄膜 1.72 × 103 - 5 × 1020 - > 95 [83]
    Ga2O3/ITO薄膜 - 164 - - > 94 [84]
    Ga2O3/ITO薄膜 - 49 - - 93.8 [85]
    Ag/Ga2O3薄膜 - 42 - - 91 [86]
    Ga2O3/Cu/ITO - 50 - - 86 [87]
    下载: 导出CSV

    表 3  几种无线通信的比较

    Table 3.  Comparison of several wireless communications

    通信类别 非视距通信 抗干扰、防窃听 相对运动信号接收 传播距离调控 受环境气候时间影响
    无线电通信 易被干扰和窃听 很差 受环境影响
    激光通信 抗干扰、防窃听 较差 受环境影响
    红外通信 较易干扰、防窃听 较差 受环境时间影响
    紫外通信 抗干扰、防窃听 很好 很小、全天候
    下载: 导出CSV

    表 4  Ga2O3基日盲紫外探测器的各参数指标汇总

    Table 4.  Summary of parameters and indicators of Ga2O3 based solar-blind ultraviolet photodetector.

    光电探测器类型 光响应度/A·W–1 量子效率/% 暗电流/A 光暗比 响应时间/s 参考文献
    Ga2O3纳米线 - - 10–12 ≈ 2 × 103 2.2 × 10–1 [91]
    Ga2O3纳米线 - - < 10–12 3 × 104 < 2 × 10–2 [88]
    Ga2O3纳米线 8.0 × 10–4 0.39 2.4 × 10–10 ≈ 102 - [92]
    Ga2O3纳米线 3.4 × 10–3 1.37 - ≈ 102 - [93]
    ZnO/Ga2O3核壳微米线 1.3 × 103(–6 V) - 10–10 ≈ 106 2 × 10–5 [100]
    ZnO/Ga2O3核壳微米线 9.7 × 10–3(0 V) - 10–10 ≈ 7 × 102 10–4 [101]
    Ga2O3纳米线 6 × 10–4 - 10–11 ≈ 102 6.4 × 10–5 [102]
    Ga2O3纳米线 3.77 × 102 2.0 × 105 10–11 103 0.21 [107]
    石墨烯/Ga2O3纳米线 1.85 × 10-1 - 10–5 - 8 × 10–3 [108]
    Ga2O3纳米片 3.3 1.6 × 103 10–9 10 3 × 10–2 [96]
    Ga2O3纳米花(γ) - - 10–9 2.2 × 102 10–1 [97]
    Ga2O3纳米带 3.37 × 101 1.67 × 104 10–13 4.0 × 102 8.6 × 101 [94]
    Ga2O3纳米带 8.51 × 102 4.2 × 103 10–13 ≈ 103 < 3 × 10–1 [98]
    Ga2O3纳米带 1.93 × 101 9.4 × 103 10–10 ≈ 104 < 2 × 10–2 [99]
    In:Ga2O3纳米带 5.47 × 102 2.72 × 105 10–13 9.1 × 102 1 [95]
    Ga2O3微米带 1.8 × 105(–30 V) 8.8 × 105 10–6 2.57 0.67 [103]
    Ga2O3微米带 - - 10–4 - 1.4 [104]
    Ga2O3微米带 1.68 - 10–13 1.9 × 103 0.53 [105]
    石墨烯/Ga2O3微米带 2.98 × 101 - 10–13 ≈ 104 - [106]
    Ga2O3单晶 2.6—8.7 - 10–10 ≈ 103 - [109]
    Ga2O3单晶 3.7 × 10–2 1.8 × 101 10–10 1.5 × 104 9 × 10–3 [89]
    Ga2O3单晶 103 - 10–10 ≈ 106 - [110]
    Ga2O3单晶 4.3 2.1 × 101 10–11 105 - [111]
    石墨烯/Ga2O3单晶 3.93 × 101 1.96 × 104 10–6 103 2.2 × 102 [112]
    Ga2O3单晶 5 × 10–2 - 10–5 102 2.4 × 10–1 [160]
    Ga2O3单晶 3 × 10–3 - 10–8 101 1.4 × 10–1 [113]
    Ga2O3薄膜 8 × 10–5 - - - - [116]
    Ga2O3薄膜 3.7 × 10–2 1.8 × 101 10–9 - - [90]
    Ga2O3薄膜 4.53 × 10–1 > 102 10–10 105 - [117]
    Ga2O3薄膜 ≈ 101 - 10–10 103 - [118]
    Ga2O3薄膜 ≈ 101 - 10–7 103 - [119]
    Ga2O3薄膜 ≈ 102 - 10–10 102 - [120]
    Ga2O3薄膜 - - 10–11 105 - [122]
    Ga2O3薄膜 7.6 × 10–1 - 10–10 6 5 × 10–2 [152]
    Ga2O3薄膜 1.7 × 101 8.2 × 103 10–9 8.5 × 106 - [153]
    Ga2O3薄膜 - - 10–11 102 8 × 10–1 [154]
    Ga2O3薄膜 9.03 × 10–1 - 10–11 105 - [155]
    Ga2O3薄膜 2.59 × 102 7.9 × 104 10–10 104 4 × 10–1 [156]
    Ga2O3薄膜 - - 10–7 15 - [157]
    Ga2O3薄膜/晶体 1.8 8.7 × 102 10–6 36.9 - [158]
    a-GaOx非晶薄膜 7.0 × 101 - 10–10 1.2 × 105 2 × 10–2 [159]
    Ga2O3薄膜 4.2 - 10–11 1.6 × 104 4 × 10–2 [159]
    Ga2O3薄膜 9 × 10–3 - 10–5 101 1.8 × 10–1 [160]
    Al:Ga2O3薄膜 1.5 7.8 × 102 - - - [164]
    Si:Ga2O3薄膜 6 × 101 3 × 104 - 9 - [166]
    Si:Ga2O3薄膜 3.6 × 101 1.75 × 104 - 9 - [167]
    Zn:Ga2O3薄膜 2.1 × 102 - 10–11 5 × 104 1.4 [168]
    Ga2O3非晶薄膜 1.9 × 10–1 - 10–12 106 1.9 × 10–5 [169]
    Ga2O3非晶薄膜 4.5 × 101 - 10–10 104 2.97 × 10–6 [171]
    Ga2O3薄膜 1.5 - 10–9 103 - [175]
    Ga2O3薄膜 0.29 1.34 10–8 1.6 × 103 0.1 [173]
    Ga2O3薄膜 0.11 - 10–9 3.5 × 103 0.45 [174]
    Ga2O3薄膜 0.14 - 10–11 1.4 × 106 0.2 [174]
    Ga2O3薄膜 1.5 - 10–8 103 - [173]
    Ga2O3薄膜 2.6 × 101 - 10–8 104 0.18 [176]
    石墨烯/Ga2O3薄膜 1.28 × 101 - 10–8 - 2 × 10–3 [177]
    Ga2O3薄膜 9.6 × 101 4.76 × 104 10–6 - - [180]
    Ga2O3薄膜 5.86 × 10–5 - 10–9 1.8 × 101 0.1 [181]
    Ga2O3薄膜 1.5 × 102 7 × 104 10–11 105 1.3 [165]
    Ga2O3薄膜 1 × 10–1 - 10–8 - - [178]
    Ga2O3薄膜 - - 10–8 6 8.6 × 10–1 [123]
    Ga2O3薄膜 - - 10–9 1.3 × 101 6.2 × 10–1 [126]
    Ga2O3/Ga/Ga2O3薄膜 2.854 - 10–11 8 × 105 - [170]
    Mn:Ga2O3薄膜 7 × 10–2 3.6 × 101 10–9 6.7 × 101 2.8 × 10–1 [127]
    α-Ga2O3薄膜 1.5 × 10–2 7.39 10–9 3 × 101 - [137]
    α-Sn:Ga2O3薄膜 9.6 × 10–2 - 10–9 1.4 × 102 1.08 [132]
    α-Sn:Ga2O3薄膜 - - 10–7 4 8.73 [131]
    ε-Sn:Ga2O3薄膜 6.05 × 10–3 3.02 10–9 46.46 - [133]
    β-Sn:Ga2O3薄膜 3.61 × 10–2 - 10–8 19 1.37 [166]
    Zn:Ga2O3薄膜 - - 10–9 2 1.23 [134]
    Er:Ga2O3薄膜 - - 10–9 2.5 1.6 × 10–1 [76]
    Au NPs/Ga2O3薄膜 102 - 10–6 > 2 × 102 - [139]
    Ga2O3/p-Si异质结 3.7 × 102 1.8 × 105 10–8 9.4 × 102 1.8 [143]
    Ga2O3/ZnO异质结 3.5 × 10–1 1.7 × 102 10–10 1.5 × 101 6.2 × 10–1 [144]
    Ga2O3/NSTO异质结 4.3 × 101 2.1 × 104 10–6 2 × 101 7 × 10–2 [142]
    Ga2O3/Ga:ZnO异质结 7.6 × 10–4 - 10–9 2.6 × 102 2.7 × 10–1 [145]
    p-Si/i-SiC/n-Ga2O3 - - 10–8 5.4 × 103 - [148]
    石墨烯/Ga2O3/SiC 1.8 × 10–1 - 10–5 6.3 × 101 1.7 [149]
    石墨烯/Ga2O3/石墨烯 9.66 - 10–9 8.3 × 101 0.96 [138]
    Ga2O3/SiC/Al2O3 - - 10–9 7.7 - [141]
    Ga2O3/Al2O3 1.4 - 10–7 9.04 1.26 [140]
    Ga2O3/SiC异质结 7 × 10–2 - 10–10 - 9 × 10–3 [121]
    Ga2O3/GaN异质结 5.4 × 10–2 - 10–6 1.5 × 102 8 × 10–2 [146]
    Sn:Ga2O3/GaN异质结 3.05 - 10–11 104 1.8 × 10–2 [147]
    α-Ga2O3/ZnO异质结 1.1 × 104(–40 V) - 10–12 - 2.4 × 10–4 [172]
    Ga2O3/金刚石异质结 2 × 10–4 - 10–9 3.7 × 101 - [179]
    下载: 导出CSV
  • [1]

    程轶 2013 博士学位论文(大连: 大连理工大学)

    Cheng Y 2013 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [2]

    马海林, 苏庆 2014 物理学报 63 116701Google Scholar

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar

    [3]

    潘惠平, 成枫锋, 李琳, 洪瑞华, 姚淑德 2013 物理学报 62 048801Google Scholar

    Pan H P, Cheng F F, Li L, Hong R H, Yao S D 2013 Acta Phys. Sin. 62 048801Google Scholar

    [4]

    Roy R, Hill V G, Osborn E F 1952 J. Am. Chem. Soc. 74 719Google Scholar

    [5]

    Kaneko K, Nomura T, Kakeya I, Fujita S 2009 Appl. Phys. Express 2 075501Google Scholar

    [6]

    Fujita S, Kaneko K 2014 J. Cryst. Growth 401 588Google Scholar

    [7]

    Shinohara D, Fujita S 2008 Jpn. J. Appl. Phys. 47 7311Google Scholar

    [8]

    Schewski R, Wagner G, Baldini M, Gogova D, Galazka Z, Schulz T, Remmele T, Markurt T, Wenckstern H V, Grundmann M, Bierwagen O, Vogt P, Albrecht M 2015 Appl. Phys. Express 8 011101Google Scholar

    [9]

    Lee S D, Akaiwa K, Fujita S 2013 Phys. Status Solidi C 10 1592Google Scholar

    [10]

    Lee S D, Ito Y, Kaneko K, Fujita S 2015 Jpn. J. Appl. Phys. 54 030301Google Scholar

    [11]

    Kaneko K, Nomura T, Fujita S 2010 Phys. Status Solidi C 7 2467Google Scholar

    [12]

    Kaneko K, Kakeya I, Komori S, Fujita S 2013 J. Appl. Phys. 113 233901Google Scholar

    [13]

    Mitome M, Kohiki S, Nagai T, Kurashima K, Kimoto K, Bando Y 2013 Cryst. Growth Des. 13 3577Google Scholar

    [14]

    Wang T, Farvid S S, Abulikemu M, Radovanovic P V 2010 J. Am. Chem. Soc. 132 9250Google Scholar

    [15]

    Playford H Y, Hannon A C, Tucker M G, Dawson D M, Ashbrook S E, Kastiban R J, Sloan J, Walton R I 2014 J. Phys. Chem. C 118 16188Google Scholar

    [16]

    Lorenzi R, Paleari A, Golubev N V, Ignat'eva E S, Sigaev V N, Niederberger M, Lauria A 2015 J. Mater. Chem. C 3 41Google Scholar

    [17]

    Takahashi M, Nakatani T, Iwamoto S, Watanabe T, Inoue M 2006 J. Phys. Condens Matter 18 5745Google Scholar

    [18]

    Oshima Y, Víllora E G, Matsushita Y, Yamamoto S, Shimamura K 2015 J. Appl. Phys. 118 085301Google Scholar

    [19]

    Ge S X, Zheng Z 2009 Solid State Sci. 11 1592Google Scholar

    [20]

    Tsuchiya T, Yusa H, Tsuchiya J 2007 Phys. Rev. B 76 174108Google Scholar

    [21]

    Bermudez V M 2006 Chem. Phys. 323 193Google Scholar

    [22]

    Yamaga M, Víllora E G, Shimamura K, Ichinose N, Honda M 2003 Phys. Rev. B 68 155207Google Scholar

    [23]

    Zacherle T, Schmidt P C, Martin M 2013 Phys. Rev. B 87 235206Google Scholar

    [24]

    Orita M, Hiramatsu H, Ohta H, Hirano M, Hosono H 2002 Thin Solid Films 411 134Google Scholar

    [25]

    Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2012 Appl. Phys. Lett. 100 013504Google Scholar

    [26]

    Dong L, Jia R, Xin B, Zhang Y 2016 J. Vac. Sci. Technol., A 34 060602

    [27]

    Dong L, Jia R, Xin B, Peng B, Zhang Y 2017 Sci. Rep. 7 40160Google Scholar

    [28]

    Tao X T 2019 J. Semicond. 40 010401Google Scholar

    [29]

    Fu B, Jia Z T, Mu W X, Yin Y R, Zhang J, Tao X T 2019 J. Semicond. 40 011804Google Scholar

    [30]

    Mohamed H F, Xia C T, Sai Q L, Cui H Y, Pan M Y, Qi H J 2019 J. Semicond. 40 011801Google Scholar

    [31]

    Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T, Yamakoshi S 2016 Semicond. Sci. Technol. 31 034001Google Scholar

    [32]

    Razeghi M 2002 Proc. IEEE 90 1006Google Scholar

    [33]

    Du X, Mei Z, Liu Z, Guo Y, Zhang T, Hou Y, Zhang Z, Xue Q, Kuznetsov A Y 2009 Adv. Mater. 21 4625Google Scholar

    [34]

    Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2014 Phys. Status Solidi A 211 21Google Scholar

    [35]

    Higashiwaki M, Jessen G H 2018 Appl. Phys. Lett. 112 060401Google Scholar

    [36]

    Villora E G, Arjoca S, Shimamura K, Inomata D, Aoki K 2014 Proc. of SPIE 8987 1

    [37]

    Wellenius P, Suresh A, Foreman J V, Everitt H O, Muth J F 2008 Mater. Sci. Eng. B 146 252Google Scholar

    [38]

    Wellenius P, Suresh A, Muth J F 2008 Appl. Phys. Lett. 92 021111Google Scholar

    [39]

    Vanithakumari S C, Nanda K K 2009 Adv. Mater. 21 3581Google Scholar

    [40]

    Lin C F, Chen K T, Huang K P 2010 IEEE Electron Device Lett. 31 1431Google Scholar

    [41]

    Choi S E, Oh Y T, Ham H K, Kim T W, Heo G S, Park J W, Choi B H, Shin D C 2011 Curr. Appl. Phys. 11 S255

    [42]

    Iizuka K, Morishima Y, Kuramata A, Shen Y J, Tsai C Y, Su Y Y, Liu G, Hsu T C, Yeh J H 2015 Proc. of SPIE 9363 1

    [43]

    Schwebel T, Fleischer M, Meixner H, Kohl C D 1998 Sens. Actuators B 49 46Google Scholar

    [44]

    Kohl D, Ochs T, Geyer W, Fleischer M, Meixner H 1999 Sens. Actuators B 59 140Google Scholar

    [45]

    Ogita M, Saika N, Nakanishi Y, Hatanaka Y 1999 Appl. Surf. Sci. 142 188Google Scholar

    [46]

    Schwebel T, Fleischer M, Meixner H 2000 Sens. Actuators B 65 176Google Scholar

    [47]

    Baban C, Toyoda Y, Ogita M 2005 Thin Solid Films 484 369Google Scholar

    [48]

    Bartic M, Toyoda Y, Baban C I, Ogita M 2006 Jpn. J. Appl. Phys., Part1 45 5186Google Scholar

    [49]

    Feng P, Xue X Y, Liu Y G, Wan Q, Wang T H 2006 Appl. Phys. Lett. 89 112114Google Scholar

    [50]

    Bartic M, Baban C I, Suzuki H, Ogita M, Isai M 2007 J. Am. Ceram. Soc. 90 2879Google Scholar

    [51]

    Liu Z F, Yamazaki T, Shen Y, Kikuta T, Nakatani N, Li Y 2008 Sens. Actuators B 129 666Google Scholar

    [52]

    Arnold S P, Prokes S M, Perkins F K, Zaghloul M E 2009 Appl. Phys. Lett. 95 103102Google Scholar

    [53]

    Lee C T, Yan J T 2010 Sens. Actuators B 147 723Google Scholar

    [54]

    Hou Y, Jayatissa A H 2014 Sens. Actuators B 204 310Google Scholar

    [55]

    Bartic M 2015 Phys. Status Solidi A 211 40

    [56]

    Hayashi H, Huang R, Ikeno H, Oba F, Yoshioka S, Tanaka I, Sonoda S 2006 Appl. Phys. Lett. 89 181903Google Scholar

    [57]

    Pei G, Xia C, Dong Y, Wu B, Wang T, Xu J 2008 Scr. Mater. 58 943Google Scholar

    [58]

    Guo D Y, Wu Z P, An Y H, Li X J, Guo X C, Chu X L, Sun C L, Lei M, Li L H, Cao L X, Li P G, Tang W H 2015 J. Mater. Chem. C 3 1830Google Scholar

    [59]

    Guo D Y, Wu Z P, Li P G, Wang Q J, Lei M, Li L H, Tang W H 2015 RSC Adv. 5 12894Google Scholar

    [60]

    Guo D Y, An Y H, Cui W, Zhi Y S, Zhao X L, Lei M, Li L H, Li P G, Wu Z P, Tang W H 2016 Sci. Rep. 6 25166Google Scholar

    [61]

    Gao X, Xia Y, Ji J, Xu H, Su Y, Li H, Yang C, Guo H, Yin J, Liu Z 2010 Appl. Phys. Lett. 97 193501Google Scholar

    [62]

    Yang J B, Chang T C, Huang J J, Chen S C, Yang P C, Chen Y T, Tseng H C, Sze S M, Chu A K, Tsai M J 2013 Thin Solid Films 529 200Google Scholar

    [63]

    Aoki Y, Wiemann C, Feyer V, Kim H S, Schneider C M, Ill-Yoo H, Martin M 2014 Nat. Commun. 5 3473Google Scholar

    [64]

    Hsu C W, Chou L J 2012 Nano Lett. 12 4247Google Scholar

    [65]

    Lee D Y, Tseng T Y 2011 J. Appl. Phys. 110 114117Google Scholar

    [66]

    Huang J J, Chang T C, Yang J B, Chen S C, Yang P C, Chen Y T, Tseng H C, Sze S M, Chu A K, Tsai M J 2012 IEEE Electron Device Lett. 33 1387Google Scholar

    [67]

    Yang J B, Chang T C, Huang J J, Chen Y T, Yang P C, Tseng H C, Chu A K, Sze S M, Tsai M J 2013 Thin Solid Films 528 26Google Scholar

    [68]

    Guo D Y, Wu Z P, An Y H, Li P G, Wang P C, Chu X L, Guo X C, Zhi Y S, Lei M, Li L H, Tang W H 2015 Appl. Phys. Lett. 106 042105Google Scholar

    [69]

    Guo D Y, Wu Z P, Zhang L J, Yang T, Hu Q R, Lei M, Li P G, Li L H, Tang W H 2015 Appl. Phys. Lett. 107 032104Google Scholar

    [70]

    Guo D Y, Qian Y P, Su Y L, Shi H Z, Li P G, Wu J T, Wang S L, Cui C, Tang W H 2017 AIP Adv. 7 065312Google Scholar

    [71]

    Wang P C, Li P G, Zhi Y S, Guo D Y, Pan A Q, Zhan J M, Liu H, Shen J Q, Tang W H 2015 Appl. Phys. Lett. 107 262110Google Scholar

    [72]

    Gollakota P, Dhawan A, Wellenius P, Lunardi L M, Muth J F, Saripalli Y N 2006 Appl. Phys. Lett. 88 221906Google Scholar

    [73]

    Sawada K, Adachi S 2014 ECS J. Solid State Sci. 3 R238Google Scholar

    [74]

    Kang B K, Mang S R, Lim H D, Song K M, Song Y H, Go D H, Jung M K, Senthil K, Yoon D H 2014 Mater. Chem. Phys. 147 178Google Scholar

    [75]

    Wu Z, Bai G, Hu Q, Guo D, Sun C, Ji L, Lei M, Li L, Li P, Hao J, Tang W 2015 Appl. Phys. Lett. 106 171910Google Scholar

    [76]

    Wu Z, Bai G, Qu Y, Guo D, Li L, Li P, Hao J, Tang W 2016 Appl. Phys. Lett. 108 211903Google Scholar

    [77]

    Li W, Peng Y, Wang C, Zhao X, Zhi Y, Yan H, Li L, Li P, Yang H, Wu Z, Tang W 2017 J. Alloys Compd. 697 388Google Scholar

    [78]

    Orita M, Ohta H, Hirano M, Hosono H 2000 Appl. Phys. Lett. 77 4166Google Scholar

    [79]

    Suzuki N, Ohira S, Tanaka M, Sugawara T, Nakajima K, Shishido T 2007 Phys. Status Solidi C 4 2310Google Scholar

    [80]

    Ou S L, Wuu D S, Fu Y C, Liu S P, Horng R H, Liu L, Feng Z C 2012 Mater. Chem. Phys. 133 700Google Scholar

    [81]

    Du X J, Li Z, Luan C N, Wang W G, Wang M X, Feng X J, Xiao H D, Ma J 2015 J. Mater. Sci. 50 3252Google Scholar

    [82]

    Mi W, Li Z, Luan C N, Xiao H D, Zhao C S, Ma J 2015 Ceram. Int. 41 2572Google Scholar

    [83]

    Minami T, Takeda Y, Kakumu T, Takata S, Fukuda I 1997 J. Vac. Sci. Technol., A 15 958Google Scholar

    [84]

    Kim S, Kim S J, Kim K H, Kim H D, Kim T G 2014 Phys. Status Solidi A 211 2569Google Scholar

    [85]

    Kim S J, Park S Y, Kim K H, Kim S W, Kim T G 2014 IEEE Electron Device Lett. 35 232Google Scholar

    [86]

    Woo K Y, Lee J H, Kim K H, Kim S J, Kim T G 2014 Phys. Status Solidi A 211 1760Google Scholar

    [87]

    Zhuang H H, Yan J L, Xu C Y, Meng D L 2014 Appl. Surf. Sci. 307 241Google Scholar

    [88]

    Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972Google Scholar

    [89]

    Oshima T, Okuno T, Arai N, Suzuki N, Hino H, Fujita S 2009 Jpn. J. Appl. Phys. 48 011605Google Scholar

    [90]

    Oshima T, Okuno T, Fujita S 2007 Jpn. J. Appl. Phys. 46 7217Google Scholar

    [91]

    Feng P, Zhang J Y, Li Q H, Wang T H 2006 Appl. Phys. Lett. 88 153107Google Scholar

    [92]

    Weng W Y, Hsueh T J, Chang S J, Huang G J, Chang S P 2010 IEEE Photonics Technol. Lett. 22 709Google Scholar

    [93]

    Wu Y L, Chang S J, Weng W Y, Liu C H, Tsai T Y, Hsu C L, Chen K C 2013 IEEE Sens. J. 13 2368Google Scholar

    [94]

    Li L, Auer E, Liao M, Fang X, Zhai T, Gautam U K, Lugstein A, Koide Y, Bando Y, Golberg D 2011 Nanoscale 3 1120Google Scholar

    [95]

    Tian W, Zhi C, Zhai T, Chen S M, Wang X, Liao M Y, Golberg D, Bando Y 2012 J. Mater. Chem. 22 17984Google Scholar

    [96]

    Feng W, Wang X N, Zhang J, Wang L, Zheng W, Hu P, Cao W, Yang B 2014 J. Mater. Chem. C 2 3254Google Scholar

    [97]

    Teng Y, Song L X, Ponchel A, Yang Z K, Xia J 2014 Adv. Mater. 26 6238Google Scholar

    [98]

    Zou R J, Zhang Z Y, Liu Q, Hu J Q, Sang L W, Liao M Y, Zhang W J 2014 Small 10 1848Google Scholar

    [99]

    Zhong M Z, Wei Z M, Meng X Q, Wu F, Li J 2015 J. Alloys Compd. 619 572Google Scholar

    [100]

    Zhao B, Wang F, Chen H Y, Wang Y P, Jiang M M, Fang X S, Zhao D X 2015 Nano Lett. 15 3988Google Scholar

    [101]

    Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D, Fang X 2017 Adv. Funct. Mater. 27 1700264Google Scholar

    [102]

    Chen X, Liu K, Zhang Z, Wang C, Li B, Zhao H, Zhao D, Shen D 2016 ACS Appl. Mater. Interfaces 8 4185Google Scholar

    [103]

    Oh S, Kim J, Ren F, Pearton S J, Kim J 2016 J. Mater. Chem. C 4 9245Google Scholar

    [104]

    Kwon Y, Lee G, Oh S, Kim J, Pearton S J, Ren F 2017 Appl. Phys. Lett. 110 131901Google Scholar

    [105]

    Oh S, Mastro M A, Tadjer M J, Kim J 2017 ECS J. Solid State. Sci. 6 Q79Google Scholar

    [106]

    Oh S, Kim C K, Kim J 2017 ACS Photonics 5 1123

    [107]

    Du J, Xing J, Ge C, Liu H, Liu P, Hao H, Dong J, Zheng Z, Gao H 2016 J. Phys. D: Appl. Phys. 49 425105Google Scholar

    [108]

    He T, Zhao Y, Zhang X, Lin W, Fu K, Sun C, Shi F, Ding X, Yu G, Zhang K, Lu S, Zhang X, Zhang B 2018 Nanophotonics 7 1557Google Scholar

    [109]

    Oshima T, Okuno T, Arai N, Suzuki N, Ohira S, Fujita S 2008 Appl. Phys. Express 1 011202Google Scholar

    [110]

    Suzuki R, Nakagomi S, Kokubun Y, Arai N, Ohira S 2009 Appl. Phys. Lett. 94 222102Google Scholar

    [111]

    Suzuki R, Nakagomi S, Kokubun Y 2011 Appl. Phys. Lett. 98 131114Google Scholar

    [112]

    Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D, Luo L B 2016 Adv. Mater. 28 10725Google Scholar

    [113]

    Mu W, Jia Z, Yin Y, Hu Q, Zhang J, Feng Q, Hao Y, Tao X 2017 CrystEngComm 19 5122Google Scholar

    [114]

    Yang C, Liang H, Zhang Z, Xia X, Tao P, Chen Y, Zhang H, Shen R, Luo Y, Du G 2018 RSC Adv. 8 6341Google Scholar

    [115]

    Ji Z, Du J, Fan J, Wang W 2006 Opt. Mater. 28 415Google Scholar

    [116]

    Kokubun Y, Miura K, Endo F, Nakagomi S 2007 Appl. Phys. Lett. 90 031912Google Scholar

    [117]

    Weng W Y, Hsueh T J, Chang S J, Huang G J, Hsueh H T 2011 IEEE Sens. J. 11 999Google Scholar

    [118]

    Huang Z D, Weng W Y, Chang S J, Chiu C, Wu S, Hsueh T 2013 IEEE Sens. J. 13 3462Google Scholar

    [119]

    Huang Z D, Weng W Y, Chang S J, Hua Y F, Chiu C J, Hsueh T J, Wu S L 2013 IEEE Sens. J. 13 1187Google Scholar

    [120]

    Huang Z D, Weng W Y, Chang S J, Hua Y F, Chiu C J, Tsai T Y 2013 IEEE Photonics Technol. Lett. 25 809

    [121]

    Nakagomi S, Momo T, Takahashi S, Kokubun Y 2013 Appl. Phys. Lett. 103 072105Google Scholar

    [122]

    Ravadgar P, Horng R H, Yao S D, Lee H Y, Wu R, Ou S L, Tu L W 2013 Opt. Express 21 24599Google Scholar

    [123]

    Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar

    [124]

    Wang X, Chen Z W, Guo D Y, Zhang X, Wu Z P, Li P G, Tang W H 2018 Opt. Mater. Express 8 2918Google Scholar

    [125]

    Peng Y K, Zhang Y, Chen Z W, Guo D Y, Zhang X, Li P G, Wu Z P, Tang W H 2018 IEEE Photonics Technol. Lett. 30 993Google Scholar

    [126]

    Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P G, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar

    [127]

    Guo D Y, Li P G, Wu Z P, Cui W, Zhao X L, Lei M, Li L H, Tang W H 2016 Sci. Rep. 6 24190Google Scholar

    [128]

    Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Wang S L, Li P G, Zhang X H, Tang W H 2017 Mater. Lett. 209 558Google Scholar

    [129]

    Guo D Y, Qin X Y, Lv M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W H 2017 Electron. Mater. Lett. 13 483Google Scholar

    [130]

    Zhao X L, Cui W, Wu Z P, Guo D Y, Li P G, An Y H, Li L H, Tang W H 2017 J. Electron. Mater. 46 2366Google Scholar

    [131]

    Zhao X L, Wu Z P, Cui W, Zhi Y S, Guo D Y, Li L H, Tang W H 2017 ACS Appl. Mater. Interfaces 9 983Google Scholar

    [132]

    Zhao X L, Wu Z P, Guo D Y, Cui W, Li P G, An Y H, Li L H, Tang W H 2016 Semicond. Sci. Technol. 31 065010Google Scholar

    [133]

    Zhao X L, Zhi Y S, Cui W, Guo D Y, Wu Z P, Li P G, Li L H, Tang W H 2016 Opt. Mater. 62 651Google Scholar

    [134]

    Zhao X L, Wu Z P, Zhi Y S, An Y H, Cui W, Li L H, Tang W H 2017 J. Phys. D: Appl. Phys. 50 085102Google Scholar

    [135]

    Zhang M, Liu G H, Gu X H, Zhou J R 2014 Journal of Nanoscience and Nanotechnology 14 3827Google Scholar

    [136]

    Li W H, Zhao X L, Zhi Y S, Zhang X H, Chen Z W, Chu X L, Yang H J, Wu Z P, Tang W H 2018 Appl. Opt. 57 538Google Scholar

    [137]

    Guo D Y, Zhao X L, Zhi Y S, Cui W, Huang Y Q, An Y H, Li P G, Wu Z P, Tang W H 2016 Mater. Lett. 164 364Google Scholar

    [138]

    Ai M L, Guo D Y, Qu Y Y, Cui W, Wu Z P, Li P G, Li L H, Tang W H 2017 J. Alloys Compd. 692 634Google Scholar

    [139]

    An H Y, Chu X L, Huang Y Q, Zhi Y S, Guo D Y, Li P G, Wu Z P, Tang W H 2016 Prog. Nat. Sci. 26 65Google Scholar

    [140]

    Cui W, Guo D Y, Zhao X L, Wu Z P, Li P G, Li L H, Cui C, Tang W H 2016 RSC Adv. 6 100683Google Scholar

    [141]

    Huang Y Q, An Y H, Wu Z P, Guo D Y, Zhi Y S, Cui W, Zhao X L, Tang W H 2017 J. Alloys Compd. 717 8Google Scholar

    [142]

    Guo D Y, Liu H, Li P G, Wu Z P, Wang S L, Cui C, Li C R, Tang W H 2017 ACS Appl. Mater. Interfaces 9 1619Google Scholar

    [143]

    Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M, Tang W H 2016 J. Alloys Compd. 660 136Google Scholar

    [144]

    Guo D Y, Shi H Z, Qian Y P, Lv M, Li P G, Su Y L, Liu Q, Chen K, Wang S L, Cui C, Li C R, Tang W H 2017 Semicond. Sci. Technol. 32 03LT1

    [145]

    Wu Z P, Jiao L, Wang X L, Guo D Y, Li W H, Li L H, Huang F, Tang W H 2017 J. Mater. Chem. C 5 8688Google Scholar

    [146]

    Li P G, Shi H Z, Chen K, Guo D Y, Cui W, Zhi Y S, Wang S L, Wu Z P, Chen Z W, Tang W H 2017 J. Mater. Chem. C 5 10562Google Scholar

    [147]

    Guo D Y, Su Y L, Shi H Z, Li P G, Zhao N, Ye J H, Wang S L, Liu A P, Chen Z W, Li C R, Tang W H 2018 ACS Nano 12 12827Google Scholar

    [148]

    An H Y, Zhi Y S, Wu Z P, Cui W, Zhao X L, Guo D Y, Li P G, Tang W H 2016 Appl. Phys. A 122 1036Google Scholar

    [149]

    Qu Y Y, Wu Z P, Ai M L, Guo D Y, An Y H, Yang H J, Li L H, Tang W H 2016 J. Alloys Compd. 680 247Google Scholar

    [150]

    An Y H, Guo D Y, Li S Y, Wu Z P, Huang Y Q, Li P G, Li L H, Tang W H 2016 J. Phys. D: Appl. Phys. 49 285111Google Scholar

    [151]

    Cui W, Zhao X L, An Y H, Guo D Y, Qing X Y, Wu Z P, Li P G, Li L H, Cui C, Tang W H 2017 J. Phys. D: Appl. Phys. 50 135109Google Scholar

    [152]

    Guo P, Xiong J, Zhao X H, Sheng T, Yue C, Tao B W, Liu X Z 2014 J. Mater. Sci. 25 3629

    [153]

    Hu G C, Shan C X, Zhang N, Jiang M M, Wang S P, Shen D Z 2015 Opt. Express 23 13554Google Scholar

    [154]

    Sheng T, Liu X Z, Qian L X, Xu B, Zhang Y Y 2015 Rare Met.Google Scholar

    [155]

    Yu F P, Ou S L, Wuu D S 2015 Opt. Mater. Express 5 1240Google Scholar

    [156]

    Liu X Z, Guo P, Sheng T, Qian L X, Zhang W L, Li Y R 2016 Opt. Mater. 51 203Google Scholar

    [157]

    Qian L X, Liu X Z, Sheng T, Zhang W L, Li Y R, Lai P T 2016 AIP Adv. 6 045009Google Scholar

    [158]

    Liu X Z, Yue C, Xia C T, Zhang W L 2016 Chin. Phys. B 25 017201Google Scholar

    [159]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [160]

    Feng Q, Huang L, Han G, Li F, Li X, Fang L, Xing X, Zhang J, Mu W, Jia Z, Guo D, Tang W, Tao X, Hao Y 2016 IEEE Trans. Electron Devices 63 3578Google Scholar

    [161]

    Feng Z Q, Huang L, Feng Q, Li X, Zhang H, Tang W H, Zhang J C, Hao Y 2018 Opt. Mater. Express 8 2229Google Scholar

    [162]

    Huang L, Feng Q, Han G Q, Li F G, Li X, Fang L W, Xing X Y, Zhang J C, Hao Y 2017 IEEE Photonics J. 9 6803708

    [163]

    Zhang K, Feng Q, Huang L, Hu Z Z, Feng Z Q, Li A, Zhou H, Lu X L, Zhang C F, Zhang J C, Hao Y 2018 IEEE Photonics J. 10 6802508

    [164]

    Feng Q, Li X, Han G, Huang L, Li F, Tang W, Zhang J, Hao Y 2017 Opt. Mater. Express 7 1240Google Scholar

    [165]

    Xu Y, An Z Y, Zhang L X, Feng Q, Zhang J C, Zhang C F, Hao Y 2018 Opt. Mater. Express 8 2941Google Scholar

    [166]

    Ahn S, Lin Y H, Ren F, Oh S, Jung Y, Yang G, Kim J, Mastro M A, Hite J K, Eddy C R, Pearton S J 2016 J. Vac. Sci. Technol. B 34 041213Google Scholar

    [167]

    Ahn S, Ren F, Oh S, Jung Y, Kim J, Mastro M A, Hite J K, Eddy C R, Pearton S J 2016 J. Vac. Sci. Technol. B 34 041207Google Scholar

    [168]

    Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H, Schoenfeld W V 2017 Phys. Status Solidi A 1 1600688

    [169]

    Cui S, Mei Z, Zhang Y, Liang H, Du X 2017 Adv. Opt. Mater. 17 00454

    [170]

    Cui S J, Mei Z. X, Hou Y N, Chen Q S, Liang H L, Zhang Y H, Huo W X, Du X L 2018 Chin. Phys. B 27 067301Google Scholar

    [171]

    Lee S H, Kim S B, Moon Y J, Kim S M, Jung H J, Seo M S, Lee K M, Kim S K, Lee S W 2017 ACS Photonics 4 2937Google Scholar

    [172]

    Chen X H, Xu Y, Zhou D, Yang S, Ren F F, Lu H, Tang K, Gu S L, Zhang R, Zheng Y D, Ye J D 2017 ACS Appl. Mater. Interfaces 9 36997Google Scholar

    [173]

    Patil-Chaudhari D, Ombaba M, Oh J Y, Mao H, Montgomery K H, Lange A, Mahajan S, Woodall J M, Islam M S 2017 IEEE Photonics J. 9 2300207

    [174]

    Rafique S, Han L, Zhao H P 2017 Phys. Status Solidi A 214 1700063Google Scholar

    [175]

    Pratiyush A S, Krishnamoorth S, Solanke S V, Xia Z B, Muralidharan R, Rajan S, Nath D N 2017 Appl. Phys. Lett. 110 221107Google Scholar

    [176]

    Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J, Huang F 2018 J. Alloys Compd. 735 150Google Scholar

    [177]

    Lin R C, Zheng W, Zhang D, Zhang Z, Liao Q, Yang L, Huang F 2018 ACS Appl. Mater. Interfaces 10 22419Google Scholar

    [178]

    Jaiswal P, Muazzam U U, Pratiyush A S, Mohan N, Raghavan S, Muralidharan R, Shivashankar S A, Nath D N 2018 Appl. Phys. Lett. 112 021105Google Scholar

    [179]

    Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L, Shan C X 2018 J. Mater. Chem. C 6 5727Google Scholar

    [180]

    Arora K, Goel N, Kumar M, Kumar M 2018 ACS Photonics 5 2391Google Scholar

    [181]

    Shen H, Yin Y, Tian K, Baskaran K, Duan L, Zhao X, Tiwari A 2018 J. Alloys Compd. 766 601Google Scholar

  • [1] 张盛源, 夏康龙, 张茂林, 边昂, 刘增, 郭宇锋, 唐为华. 基于GaN/(BA)2PbI4异质结的自供电双模式紫外探测器. 物理学报, 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [2] 张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志. 氧化镓悬臂式薄膜日盲探测器及其电弧检测应用研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240186
    [3] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240267
    [4] 王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇. $\boldsymbol\beta$-Ga2O3晶体本征缺陷诱导的宽带超快光生载流子动力学. 物理学报, 2023, 72(21): 214202. doi: 10.7498/aps.72.20231173
    [5] 李磊, 支钰崧, 张茂林, 刘增, 张少辉, 马万煜, 许强, 沈高辉, 王霞, 郭宇锋, 唐为华. 关于Ga2O3/Al0.1Ga0.9N同型异质结的双波段、双模式紫外探测性能分析. 物理学报, 2023, 72(2): 027301. doi: 10.7498/aps.72.20221738
    [6] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 物理学报, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [7] 刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟. Cu掺杂β-Ga2O3薄膜的制备及紫外探测性能. 物理学报, 2023, 72(19): 198503. doi: 10.7498/aps.72.20230971
    [8] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能. 物理学报, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [9] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器. 物理学报, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [10] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响. 物理学报, 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [11] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 物理学报, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [12] 吴芳, 步扬, 刘志帆, 王少卿, 李思坤, 王向朝. 深紫外双层金属光栅偏振器的设计与分析. 物理学报, 2021, 70(4): 044203. doi: 10.7498/aps.70.20201403
    [13] 玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊. 基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究. 物理学报, 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039
    [14] 周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊. N掺杂对${\boldsymbol\beta} $-Ga2O3薄膜日盲紫外探测器性能的影响. 物理学报, 2021, 70(17): 178503. doi: 10.7498/aps.70.20210434
    [15] 祁祺, 陈海峰, 洪梓凡, 刘英英, 过立新, 李立珺, 陆芹, 贾一凡. 无催化剂条件下长达毫米级的超宽Ga2O3单晶纳米带制备及特性. 物理学报, 2020, 69(16): 168101. doi: 10.7498/aps.69.20200481
    [16] 赵赞善, 李培丽. 基于半导体光纤环形腔激光器的全光广播式超宽带信号源. 物理学报, 2019, 68(14): 140401. doi: 10.7498/aps.68.20182301
    [17] 裴佳楠, 蒋大勇, 田春光, 郭泽萱, 刘如胜, 孙龙, 秦杰明, 侯建华, 赵建勋, 梁庆成, 高尚. 包埋Pt纳米粒子对金属-半导体-金属结构ZnO紫外光电探测器性能的影响. 物理学报, 2015, 64(6): 067802. doi: 10.7498/aps.64.067802
    [18] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号. 物理学报, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [19] 张孝富, 李豫东, 郭旗, 罗木昌, 何承发, 于新, 申志辉, 张兴尧, 邓伟, 吴正新. 60Coγ射线对高铝组分Al0.5Ga0.5N基p-i-n日盲型光探测器理想因子的影响. 物理学报, 2013, 62(7): 076106. doi: 10.7498/aps.62.076106
    [20] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响. 物理学报, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
计量
  • 文章访问数:  23297
  • PDF下载量:  829
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-15
  • 修回日期:  2019-01-30
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-05

/

返回文章
返回