搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Te掺杂对二维InSe抗氧化性以及电子结构的影响

苗瑞霞 谢妙春 程开 李田甜 杨小峰 王业飞 张德栋

引用本文:
Citation:

Te掺杂对二维InSe抗氧化性以及电子结构的影响

苗瑞霞, 谢妙春, 程开, 李田甜, 杨小峰, 王业飞, 张德栋

Effect of Te doping on oxidation resistance and electronic structure of two-dimensional InSe

Miao Rui-Xia, Xie Miao-Chun, Cheng Kai, Li Tian-Tian, Yang Xiao-Feng, Wang Ye-Fei, Zhang De-Dong
PDF
HTML
导出引用
  • InSe作为一种典型的二维层状半导体材料, 具有优异的电学性能以及适中可调的带隙, 在光电器件中表现出诱人的应用前景. 然而有研究表明, 单硒空位(Vse)体系的InSe易受O2分子影响, 造成InSe材料降解, 严重影响其在电子器件领域的应用. 本文基于InSe降解机理, 提出了碲(Te)替位掺杂的方法, 用于提升该材料的环境稳定性. 利用密度泛函理论对不同体系电子结构、吸附能、能量反应路径等进行分析, 发现Te掺杂不仅显著改善缺陷引起的InSe降解问题, 同时可消除Vse产生的缺陷态, 起到缺陷补偿作用. 具体研究结果如下: 1) O2分子在Te掺杂InSe表面(InSe-Te)的解离能垒高达2.67 eV, 说明其具有较强的抗氧化能力; 2) O2分子在InSe-Te表面保持3.87 Å的距离, 吸附能仅有–0.03 eV, 表明O2分子物理吸附在其单层表面; 3) Te掺杂不仅提升材料抗氧化能力, 同时还消除了Vse产生的缺陷态. 该研究结果将有助于进一步提升InSe二维材料器件的环境稳定性, 推动InSe二维器件研究和发展.
    InSe is a typical two-dimensional (2D) layered semiconductor material, which has excellent electrical properties and moderate adjustable band gap. It is found that InSe has an attractive application prospect in optoelectronic devices. However, some studies have shown that InSe in a single selenium vacancy (Vse) system is easily degraded when exposed to the environment of O2 molecule, which seriously affects the application of InSe in the field of electronic devices. In order to improve the environmental stability of the material, the substitution doping method of Te is proposed in this work. Density functional theory (DFT) is used to analyze the electronic structure, adsorption energy, Bader charge and energy reaction paths of the different systems. It is found that Te substitution doping can significantly improve the stability of InSe. At the same time, the defect state produced by Vse can be eliminated. The specific research results are as follows. First, the dissociation barrier of O2 molecule on Te doped InSe surface (InSe—Te) is as high as 2.67 eV, indicating that Te-doped InSe has a strong antioxidant capacity. Second, the distance between O2 molecule and the surface of InSe—Te is 3.87 Å, and the adsorption energy is only –0.03 eV, indicating that O2 molecules are physically adsorbed on the monolayer surface. Third, Te doping not only improves the antioxidant capacity of the InSe, but also eliminates the defect state produced by Vse. Fourth, the Te-doping obviously eliminates the original Vse defect state or impurity band. The density of states and band structure of Te-doped InSe are almost the same as those of perfect InSe, which can maintain the stability of InSe structure and effectively reduce the damage of oxidation environment to defective InSe monolayer. The results of this study will be helpful in improving the environmental stability of InSe 2D material devices and promoting the research and development of InSe 2D devices.
      通信作者: 苗瑞霞, miao9508301@163.com
    • 基金项目: 国家自然科学基金(批准号: 51302215, 62105260, 12004303)资助的课题
      Corresponding author: Miao Rui-Xia, miao9508301@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51302215, 62105260, 12004303).
    [1]

    Ang Y S, Cao L M, Ang L K 2021 InfoMat 3 502Google Scholar

    [2]

    Xu K, Yin L, Huang Y, Shifa T A, Chu J W, Wang F, Cheng R Q, Wang Z X, He J 2016 Nanoscale 8 16802Google Scholar

    [3]

    Huang W J, Gan L, Li H Q, Ma Y, Zhai T Y 2016 CrystEngComm 18 3968Google Scholar

    [4]

    Sun Y H, Li Y W, Li T S, Biswas K, Patan A, Zhang L J 2020 Adv. Funct. Mater. 30 2001920Google Scholar

    [5]

    Ma D W, Ju W W, Tang Y N, Chen Y 2017 Appl. Surf. Sci. 426 244Google Scholar

    [6]

    Sun C, Xiang H, Xu B, Xia Y D, Yin J, Liu Z G 2016 Appl. Phys. Express 9 035203Google Scholar

    [7]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223Google Scholar

    [8]

    Dai M J, Gao C F, Nie Q F, Wang Q J, Lin Y F, Chu J H, Li W W 2022 Adv. Mater. Technol. 7 2200321Google Scholar

    [9]

    Tamalampudi S R, Lu Y Y, Kumar U R, Sankar R, Liao C D, Moorthy B K, Cheng C H, Chou F C, Chen Y T 2014 Nano Lett. 14 2800Google Scholar

    [10]

    Balakrishnan N, Kudrynskyi Z R, Smith E F, Fay M W, Makarovsky O, Kovalyuk Z D, Eaves L, Beton P H, Patanè A 2017 2D Mater. 4 025043Google Scholar

    [11]

    Shi L, Zhou Q H, Zhao Y H, Ouyang Y X, Ling C Y, Li Q, Wang J L 2017 J. Phys. Chem. C 8 4368Google Scholar

    [12]

    Nan H Y, Guo S J, Cai S, Chen Z R, Zafar A, Zhang X M, Gu X F, Xiao S Q, Ni Z H 2018 Semicond. Sci. Tech. 33 074002Google Scholar

    [13]

    Wang X Y, Nan H Y, Dai W, Lin Q, Liu Z, Gu X F, Ni Z H, Xiao S Q 2019 Appl. Surf. Sci. 467 860Google Scholar

    [14]

    Yang B C, Wan B S, Zhou Q H, Wang Y, Hu W T, Lyu W M, Chen Q, Zeng Z M, Wen F S, Xiang J Y, Yuan S J, Wang J L, Zhang B S, Wang W H, Zhang J Y, Xu B, Zhao Z S, Tian Y J, Liu Z Y 2016 Adv. Mater. 28 9408Google Scholar

    [15]

    Rahman R S, Asokan K, Zulfequar M 2022 J. Phys. Chem. C 126 6065Google Scholar

    [16]

    Li Q, Zheng S X, Pu J B, Wang W Z, Li L, Wang L P 2019 Appl. Surf. Sci. 487 1121Google Scholar

    [17]

    Ding Y, Wang Y L 2015 J. Phys. Chem. C 119 27848Google Scholar

    [18]

    Ma D W, Li T X, Yuan D, He C Z, Lu Z, Lu Z S, Yang Z X, Wang Y X 2018 Appl. Surf. Sci. 434 215Google Scholar

    [19]

    Li X P, Xia C X, Song X H, Du J, Xiong W Q 2017 J. Mater. Sci. 52 7207Google Scholar

    [20]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [21]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [23]

    Wei X, Dong C F, Xu A N, Li X G, MacDonald D D 2018 Phys. Chem. Chem. Phys. 20 2238Google Scholar

    [24]

    Wu X, Vargas M C, Nayak S, Lotrich V, Scoles G 2001 J. Phys. Chem. C 115 8748Google Scholar

    [25]

    刘子媛, 潘金波, 张余洋, 杜世萱 2021 物理学报 70 027301Google Scholar

    Liu Z Y, Pan J B, Zhang Y Y, Du S X 2021 Acta Phys. Sin. 70 027301Google Scholar

    [26]

    Mortensen J J, Hansen L B, Jacobsen K W 2005 Phys. Rev. B 71 035109Google Scholar

    [27]

    Moellmann J, Grimme S 2014 J. Phys. Chem. C 118 7615Google Scholar

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [29]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Phys. Chem. C 113 9901Google Scholar

    [30]

    Kistanov A A, Cai Y Q, Kripalani D R, Zhou K, Dmitriev S V, Zhang Y W 2018 J. Mater. Chem. C 6 4308Google Scholar

    [31]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301Google Scholar

    Sun J P, Liao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301Google Scholar

    [32]

    林雪玲, 潘凤春 2013 物理学报 62 166102Google Scholar

    Lin X L, Pan F C 2013 Acta Phys. Sin. 62 166102Google Scholar

    [33]

    王应, 李勇, 李宗宝 2016 物理学报 65 037101Google Scholar

    Wang Y, Li Y, Li Z B 2016 Acta Phys. Sin. 65 037101Google Scholar

    [34]

    Guo Y, Zhou S, Bai Y Z, Zhao J J 2017 J. Phys. Chem. C 147 104709Google Scholar

    [35]

    Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642Google Scholar

    [36]

    Meng Y Z, Ling C Y, Xin R, Wang P, Song Y, Bu H J, Gao S, Wang X F, Song F Q, Wang J L, Wang X R, Wang B G, Wang G H 2017 npj Quantum Mater. 2 16Google Scholar

    [37]

    Wang D, Li X B, Sun H B 2017 Nanoscale 9 11619Google Scholar

  • 图 1  (a) 单层InSe晶体结构图 (顶视图和侧视图); (b) 单层InSe态密度图

    Fig. 1.  (a) Crystal structure diagrams of InSe monolayer (top view and side view); (b) the calculated density of states of InSe monolayer

    图 2  (a) InSe-Vse晶体结构图 (顶视图以及侧视图); (b) InSe-Vse态密度图

    Fig. 2.  (a) Crystal structure diagrams of InSe-Vse (top view and side view); (b) the calculated density of states of InSe-Vse.

    图 3  (a) InSe-Te晶体结构图 (顶视图和侧视图); (b) InSe-Te态密度图

    Fig. 3.  (a) Crystal structure diagrams of InSe-Te (top view and side view); (b) the calculated density of states of InSe-Te.

    图 4  完美InSe (a), InSe-Vse (b), InSe-Te (c)的能带结构图

    Fig. 4.  Band structures of perfect InSe (a), InSe-Vse (b), and InSe-Te (c).

    图 5  (a) InSe-Te/O2 晶体结构图 (顶视图和侧视图); (b) InSe-Te/O2态密度图

    Fig. 5.  (a) Crystal structure diagrams of InSe-Te/O2 (top view and side view); (b) the calculated density of states of InSe-Te/O2.

    图 6  O2分子在InSe-Te表面的吸附位点

    Fig. 6.  Adsorption site of O2 molecule on the surface of InSe-Te.

    图 7  O2吸附于InSe-Vse和InSe-Te的差分电荷密度 (a), (d) InSe-Vse/O2; (b), (e) InSe-Vse@O2; (c), (f) InSe-Te/O2. 分子-表面的差分电荷密度($ \Delta \rho $, 等值面设为0.001e/bohr3), 黄色代表电子积累区域($ \Delta \rho > 0 $), 蓝色代表电子缺失区域($ \Delta \rho < 0 $)

    Fig. 7.  Differential charge density of O2 adsorbed on InSe-Vse and InSe-Te: (a), (d) InSe-Vse/O2; (b), (e) InSe-Vse@O2; (c), (f) InSe-Te. Differential charge density of molecular-surface ($ \Delta \rho $, the equivalent surface is set to 0.001e/bohr3), yellow represents areas where electrons accumulate ($ \Delta \rho > 0 $), blue is the electron missing region ($ \Delta \rho < 0 $).

    图 8  O2分子在InSe-Te上解离成两个O原子的反应途径, 其中IS, TS和FS 代表初始状态、过渡态和末态

    Fig. 8.  Reaction pathway for an O2 molecule to dissociate into two O atom on InSe-Te, including initial state (IS), transition state (TS) and final state (FS).

    图 9  O2分子分别在 (a) 完美InSe和 (b) InSe-Vse表面解离成两个O原子的反应途径, 其中IS, TS, MS和FS 代表初始状态、过渡态、中间态和末态

    Fig. 9.  Reaction pathway for an O2 molecule to dissociate into two O atom on (a) InSe-Te and (b) InSe-Vse, including initial state (IS), transition state (TS), intermediate state (MS), and final state (FS).

    表 1  O2分子在InSe-Te表面不同位点的吸附能

    Table 1.  Adsorption energy of O2 molecule at different sites on InSe-Te surface.

    吸附能吸附位点
    $ {T}_{{\rm{T}}{\rm{e}}} $$ {T}_{{\rm{h}}{\rm{o}}{\rm{l}}{\rm{l}}{\rm{o}}{\rm{w}}} $$ {T}_{{\rm{I}}{\rm{n}}} $$ {T}_{{\rm{S}}{\rm{e}}} $$ {T}_{{\rm{S}}{\rm{e}}-{\rm{T}}{\rm{e}}} $$ {T}_{{\rm{I}}{\rm{n}}-{\rm{T}}{\rm{e}}} $
    $ {E}_{{\rm{a}}{\rm{d}}} $/eV–0.03–0.07–0.08–0.05–0.07–0.05
    下载: 导出CSV

    表 2  O2在完美InSe, InSe-Te, InSe-Vse表面的吸附能($ {{E}}_{\rm{ad}} $)、电荷转移量($ {\Delta {n}}_{\rm{e}} $)、O—O键长(d)以及原子距离高度(h)

    Table 2.  Adsorption energy ($ {{E}}_{\rm{ad}} $), charge transfer ($ {\Delta {n}}_{\rm{e}} $), O—O bond length (d) and atomic distance height (h) of O2 on perfect InSe, InSe-Te and InSe-Vse surfaces, respectively.

    ${{E} }_{\rm{ad} }$/eV$ {\Delta {n}}_{\rm{e}}/ e$$ {{d}}_{\rm{O-O}}/ $Å$ {h}/ $Å
    InSe/O2–0.09[18]0.02[18]1.24[18]3.57[18]
    InSe—Te/O2–0.030.011.233.87
    InSe—Vse/O2–0.110.101.241.70
    InSe—Vse@O23.281.231.52
    下载: 导出CSV
  • [1]

    Ang Y S, Cao L M, Ang L K 2021 InfoMat 3 502Google Scholar

    [2]

    Xu K, Yin L, Huang Y, Shifa T A, Chu J W, Wang F, Cheng R Q, Wang Z X, He J 2016 Nanoscale 8 16802Google Scholar

    [3]

    Huang W J, Gan L, Li H Q, Ma Y, Zhai T Y 2016 CrystEngComm 18 3968Google Scholar

    [4]

    Sun Y H, Li Y W, Li T S, Biswas K, Patan A, Zhang L J 2020 Adv. Funct. Mater. 30 2001920Google Scholar

    [5]

    Ma D W, Ju W W, Tang Y N, Chen Y 2017 Appl. Surf. Sci. 426 244Google Scholar

    [6]

    Sun C, Xiang H, Xu B, Xia Y D, Yin J, Liu Z G 2016 Appl. Phys. Express 9 035203Google Scholar

    [7]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223Google Scholar

    [8]

    Dai M J, Gao C F, Nie Q F, Wang Q J, Lin Y F, Chu J H, Li W W 2022 Adv. Mater. Technol. 7 2200321Google Scholar

    [9]

    Tamalampudi S R, Lu Y Y, Kumar U R, Sankar R, Liao C D, Moorthy B K, Cheng C H, Chou F C, Chen Y T 2014 Nano Lett. 14 2800Google Scholar

    [10]

    Balakrishnan N, Kudrynskyi Z R, Smith E F, Fay M W, Makarovsky O, Kovalyuk Z D, Eaves L, Beton P H, Patanè A 2017 2D Mater. 4 025043Google Scholar

    [11]

    Shi L, Zhou Q H, Zhao Y H, Ouyang Y X, Ling C Y, Li Q, Wang J L 2017 J. Phys. Chem. C 8 4368Google Scholar

    [12]

    Nan H Y, Guo S J, Cai S, Chen Z R, Zafar A, Zhang X M, Gu X F, Xiao S Q, Ni Z H 2018 Semicond. Sci. Tech. 33 074002Google Scholar

    [13]

    Wang X Y, Nan H Y, Dai W, Lin Q, Liu Z, Gu X F, Ni Z H, Xiao S Q 2019 Appl. Surf. Sci. 467 860Google Scholar

    [14]

    Yang B C, Wan B S, Zhou Q H, Wang Y, Hu W T, Lyu W M, Chen Q, Zeng Z M, Wen F S, Xiang J Y, Yuan S J, Wang J L, Zhang B S, Wang W H, Zhang J Y, Xu B, Zhao Z S, Tian Y J, Liu Z Y 2016 Adv. Mater. 28 9408Google Scholar

    [15]

    Rahman R S, Asokan K, Zulfequar M 2022 J. Phys. Chem. C 126 6065Google Scholar

    [16]

    Li Q, Zheng S X, Pu J B, Wang W Z, Li L, Wang L P 2019 Appl. Surf. Sci. 487 1121Google Scholar

    [17]

    Ding Y, Wang Y L 2015 J. Phys. Chem. C 119 27848Google Scholar

    [18]

    Ma D W, Li T X, Yuan D, He C Z, Lu Z, Lu Z S, Yang Z X, Wang Y X 2018 Appl. Surf. Sci. 434 215Google Scholar

    [19]

    Li X P, Xia C X, Song X H, Du J, Xiong W Q 2017 J. Mater. Sci. 52 7207Google Scholar

    [20]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [21]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [23]

    Wei X, Dong C F, Xu A N, Li X G, MacDonald D D 2018 Phys. Chem. Chem. Phys. 20 2238Google Scholar

    [24]

    Wu X, Vargas M C, Nayak S, Lotrich V, Scoles G 2001 J. Phys. Chem. C 115 8748Google Scholar

    [25]

    刘子媛, 潘金波, 张余洋, 杜世萱 2021 物理学报 70 027301Google Scholar

    Liu Z Y, Pan J B, Zhang Y Y, Du S X 2021 Acta Phys. Sin. 70 027301Google Scholar

    [26]

    Mortensen J J, Hansen L B, Jacobsen K W 2005 Phys. Rev. B 71 035109Google Scholar

    [27]

    Moellmann J, Grimme S 2014 J. Phys. Chem. C 118 7615Google Scholar

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [29]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Phys. Chem. C 113 9901Google Scholar

    [30]

    Kistanov A A, Cai Y Q, Kripalani D R, Zhou K, Dmitriev S V, Zhang Y W 2018 J. Mater. Chem. C 6 4308Google Scholar

    [31]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301Google Scholar

    Sun J P, Liao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301Google Scholar

    [32]

    林雪玲, 潘凤春 2013 物理学报 62 166102Google Scholar

    Lin X L, Pan F C 2013 Acta Phys. Sin. 62 166102Google Scholar

    [33]

    王应, 李勇, 李宗宝 2016 物理学报 65 037101Google Scholar

    Wang Y, Li Y, Li Z B 2016 Acta Phys. Sin. 65 037101Google Scholar

    [34]

    Guo Y, Zhou S, Bai Y Z, Zhao J J 2017 J. Phys. Chem. C 147 104709Google Scholar

    [35]

    Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642Google Scholar

    [36]

    Meng Y Z, Ling C Y, Xin R, Wang P, Song Y, Bu H J, Gao S, Wang X F, Song F Q, Wang J L, Wang X R, Wang B G, Wang G H 2017 npj Quantum Mater. 2 16Google Scholar

    [37]

    Wang D, Li X B, Sun H B 2017 Nanoscale 9 11619Google Scholar

  • [1] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [2] 宋庆功, 王丽杰, 朱燕霞, 康建海, 顾威风, 王明超, 刘志锋. 硅和钇双掺杂对γ-TiAl基合金稳定性和抗氧化性的影响. 物理学报, 2019, 68(19): 196101. doi: 10.7498/aps.68.20190490
    [3] 王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东. (Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06. 物理学报, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [4] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [5] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [6] 朱学文, 徐利春, 刘瑞萍, 杨致, 李秀燕. N-F共掺杂锐钛矿二氧化钛(101)面纳米管的第一性原理研究. 物理学报, 2015, 64(14): 147103. doi: 10.7498/aps.64.147103
    [7] 高潭华. 外来原子替代碳的氟化石墨烯的磁性和电子性质. 物理学报, 2014, 63(4): 046102. doi: 10.7498/aps.63.046102
    [8] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [9] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [10] 杨双波. 掺杂浓度及掺杂层厚度对Si均匀掺杂的GaAs量子阱中电子态结构的影响. 物理学报, 2013, 62(15): 157301. doi: 10.7498/aps.62.157301
    [11] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究. 物理学报, 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [12] 徐金荣, 王影, 朱兴凤, 李平, 张莉. N掺杂和N-V共掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, 2012, 61(20): 207103. doi: 10.7498/aps.61.207103
    [13] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究. 物理学报, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [14] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [15] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [16] 徐新发, 邵晓红. Y掺杂SrTiO3晶体材料的电子结构计算. 物理学报, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [17] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [18] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质. 物理学报, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [19] 丁迎春, 向安平, 徐 明, 祝文军. 掺稀土元素(Y,La)的γ-Si3N4的电子结构和光学性质. 物理学报, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [20] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
计量
  • 文章访问数:  1894
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-01
  • 修回日期:  2023-03-23
  • 上网日期:  2023-04-21
  • 刊出日期:  2023-06-20

/

返回文章
返回