搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直流脉冲磁控反应溅射技术制备掺铝氧化锌薄膜的研究

陈超 冀勇 郜小勇 赵孟珂 马姣民 张增院 卢景霄

引用本文:
Citation:

直流脉冲磁控反应溅射技术制备掺铝氧化锌薄膜的研究

陈超, 冀勇, 郜小勇, 赵孟珂, 马姣民, 张增院, 卢景霄

Study on the deposition of aluminum-doped zinc oxide films using direct-current pulse magnetron reactive sputtering technique

Chen Chao, Ji Yong, Gao Xiao-Yong, Zhao Meng-Ke, Ma Jiao-Min, Zhang Zeng-Yuan, Lu Jing-Xiao
PDF
导出引用
  • 文章采用直流脉冲磁控反应溅射(DCPsputtering)技术,在不同氧氩比(GFR)条件下玻璃衬底上制备了一系列掺铝氧化锌(AZO)薄膜,并利用X射线衍射、扫描电子显微镜和分光光度计从宏观应力和微观晶格畸变的角度研究了GFR对薄膜结构、表面形貌和光学特性的影响.制备的多晶AZO薄膜呈现了明显的ZnO-(103)择优取向,这归结于3小时薄膜沉积过程中伴随的退火引起的薄膜晶面能转变.随着GFR的增大,AZO薄膜内宏观拉应力先增大到最大值,随后宏观压应力随着GFR的继续增大而增大.薄膜中的宏观应力明显随着GFR从拉应力向压应力转变.这与晶格微观畸变诱导的微观应力的研究结果趋势恰恰相反.随着GFR的增加,薄膜在可见光区的平均透射率先增加后减小,薄膜晶粒尺寸诱导的晶界散射是影响薄膜透射率的主导机制.
    Aluminum-doped zinc oxide (AZO) films have potential applications in photoconducting and piezo-electric devices, and gas and piezo sensors. Although the film structure and optical properties are intensively studied, the effect of gas flow ratio of O2 to Ar (GFR) on the film structure and optical properties has not been reported in terms of macrostress and lattice strain. In this paper, a series of AZO films is deposited on glass substrates by direct-current pulse magnetron reactive sputtering under different GFRs. The influence of the GFR on the crystalline structure, the surface topography, and the optical properties of the film is systematically studied in terms of macrostress and lattice strain by using X-ray diffractometry, scanning electron microscopy and spectrophotometry, respectively. The as-deposited AZO films are polycrystalline and (103) oriented, which can be attributed to the change in crystalline face energy during the accompanied thermal annealing for 3 h. The film tensile stress first increases to a maximum value, and then decreases gradually with GFR values increasing. It is noted that the transition from tensile to compressive stress occurs with GFR increasing. This result is different form that of lattice strain. The film transmissivity in the visible region first decreases and then increases with GFR increasing, which is attributed mainly to the scattering of grain boundary induced by the grain size.
    • 基金项目: 国家自然科学基金(批准号: 60807001)、河南省教育厅自然科学研究计划项目(批准号: 2010A140017)和郑州大学研究生创新基金项目(批准号: 11L1902)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60807001), the Foundation of Henan Educational Committee, China (Grant No. 2010A140017), Henan Province College Young Teachers Program of China, and the Graduate Innovation Foundation of Zhengzhou University, China (Grant No. 11L10102).
    [1]

    Robert F 1997 Science 276 890

    [2]

    Song D, Aberle A G, Xia J 2002 Appl. Surf. Sci. 195 291

    [3]

    Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigh J A, Gnade B E 1996 J. Appl. Phys. 79 7983

    [4]

    Chopra K L, Major S, Pandya D K 1983 Thin Solid Films 102 1

    [5]

    Granqvist C G 1990 Thin Solid Films 730 193

    [6]

    Kluth O, Schöpe G, Hüpkes J, Agashe C, Müller J, Rech B 2003Thin Solid Films 442 80

    [7]

    Zhang D H, Brod D E 1995 Acta Phys. Sin. 44 1321 (in Chinese) [张德恒, Brod D E 1995 物理学报 44 1321]

    [8]

    Kim K H, Park K C, Ma D Y 1997 J. Appl. Phys. 81 7764

    [9]

    Major C, Nemeth A, Radnoczi G, Czigany Z, Fried M, Labadi Z, Barsony I 2009 Appl. Surf. Sci. 255 8907

    [10]

    Hong R J, Jiang X 2006 Appl. Phys. A 84 161

    [11]

    Deng Z H, Huang C G, Huang J Q, Wang M L, He H, Wang H, Cao Y G 2010 J. Mater. Sci.- Mater. Electron. 21 1030

    [12]

    Gao X Y, Lin Q G, Feng H L, Liu Y F, Lu J X 2009 Thin SolidFilms 517 4684

    [13]

    Sahu D R, Lin S Y, Huang J L 2007 Appl. Surf . Sci. 253 4886

    [14]

    Chen M, Bai X D, Huang R F, Wen L S 2000 Chin. J. Semicond.21 394 (in Chinese) [陈猛, 白雪冬, 黄荣芳, 闻立时 2000 半导体学报 21 394]

    [15]

    Kim H, Piqueb A, Horwitzb J S, Murata H, Kafafi Z H, GilmoreC M, Chrisey D B 2000 Thin Solid Films 377-378 798

    [16]

    Segmuller A, Murakami M, Rosenberg R 1988 Analytical Techniquesfor Thin Films (Boston: Academic Press) p143

    [17]

    Cebulla R, Wendi R, Ellmer K 1998 J. Appl. Phys. 83 1087

    [18]

    Mi X C, Chen Y Y, Wu Z J, Liu X H, Yang S Y, Zhang L C 2004PARTA: Physical Testing 40 181 (in Chinese) [宓小川, 陈英颖, 吴则嘉, 刘晓晗, 杨晟远, 张林春 2004 理化检验-物理分册 40 179]

    [19]

    Gao X Y, Liu XW, Feng H L, Lu J X 2010 J. Zhengzhou Univ. (Nat.Sci. Ed.) 42 51(in Chinese) [郜小勇, 刘绪伟, 冯红亮, 卢景霄 2010 郑州大学学报(理学版) 42 51]

    [20]

    Yim K, Kim H, Lee C 2006 J. Electroceram. 17 875

  • [1]

    Robert F 1997 Science 276 890

    [2]

    Song D, Aberle A G, Xia J 2002 Appl. Surf. Sci. 195 291

    [3]

    Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigh J A, Gnade B E 1996 J. Appl. Phys. 79 7983

    [4]

    Chopra K L, Major S, Pandya D K 1983 Thin Solid Films 102 1

    [5]

    Granqvist C G 1990 Thin Solid Films 730 193

    [6]

    Kluth O, Schöpe G, Hüpkes J, Agashe C, Müller J, Rech B 2003Thin Solid Films 442 80

    [7]

    Zhang D H, Brod D E 1995 Acta Phys. Sin. 44 1321 (in Chinese) [张德恒, Brod D E 1995 物理学报 44 1321]

    [8]

    Kim K H, Park K C, Ma D Y 1997 J. Appl. Phys. 81 7764

    [9]

    Major C, Nemeth A, Radnoczi G, Czigany Z, Fried M, Labadi Z, Barsony I 2009 Appl. Surf. Sci. 255 8907

    [10]

    Hong R J, Jiang X 2006 Appl. Phys. A 84 161

    [11]

    Deng Z H, Huang C G, Huang J Q, Wang M L, He H, Wang H, Cao Y G 2010 J. Mater. Sci.- Mater. Electron. 21 1030

    [12]

    Gao X Y, Lin Q G, Feng H L, Liu Y F, Lu J X 2009 Thin SolidFilms 517 4684

    [13]

    Sahu D R, Lin S Y, Huang J L 2007 Appl. Surf . Sci. 253 4886

    [14]

    Chen M, Bai X D, Huang R F, Wen L S 2000 Chin. J. Semicond.21 394 (in Chinese) [陈猛, 白雪冬, 黄荣芳, 闻立时 2000 半导体学报 21 394]

    [15]

    Kim H, Piqueb A, Horwitzb J S, Murata H, Kafafi Z H, GilmoreC M, Chrisey D B 2000 Thin Solid Films 377-378 798

    [16]

    Segmuller A, Murakami M, Rosenberg R 1988 Analytical Techniquesfor Thin Films (Boston: Academic Press) p143

    [17]

    Cebulla R, Wendi R, Ellmer K 1998 J. Appl. Phys. 83 1087

    [18]

    Mi X C, Chen Y Y, Wu Z J, Liu X H, Yang S Y, Zhang L C 2004PARTA: Physical Testing 40 181 (in Chinese) [宓小川, 陈英颖, 吴则嘉, 刘晓晗, 杨晟远, 张林春 2004 理化检验-物理分册 40 179]

    [19]

    Gao X Y, Liu XW, Feng H L, Lu J X 2010 J. Zhengzhou Univ. (Nat.Sci. Ed.) 42 51(in Chinese) [郜小勇, 刘绪伟, 冯红亮, 卢景霄 2010 郑州大学学报(理学版) 42 51]

    [20]

    Yim K, Kim H, Lee C 2006 J. Electroceram. 17 875

  • [1] 何建林, 刘贵立, 李欣玥. 扭转变形对掺金黑磷烯电子结构和光学性质的影响. 物理学报, 2021, 70(22): 226301. doi: 10.7498/aps.70.20210795
    [2] 潘磊, 宋宝安, 肖传富, 张培晴, 林常规, 戴世勋. 两种Ge-Sb-Se薄膜的光学性质及微观结构. 物理学报, 2020, 69(11): 114201. doi: 10.7498/aps.69.20200145
    [3] 杜成旭, 王婷, 杜颖妍, 贾倩, 崔玉亭, 胡爱元, 熊元强, 毋志民. Ag-Cr共掺LiZnP新型稀磁半导体的光电性质. 物理学报, 2018, 67(18): 187101. doi: 10.7498/aps.67.20180450
    [4] 费潇, 罗炳成, 金克新, 陈长乐. 镧掺杂BaSnO3薄膜的电学和光学特性. 物理学报, 2015, 64(20): 207303. doi: 10.7498/aps.64.207303
    [5] 周攀钒, 袁欢, 徐小楠, 鹿轶红, 徐明. 过渡金属与F共掺杂ZnO薄膜结构及磁、光特性. 物理学报, 2015, 64(24): 247503. doi: 10.7498/aps.64.247503
    [6] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究 . 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [7] 牛忠彩, 何智兵, 张颖, 韦建军, 廖国, 杜凯, 唐永建. 射频功率对辉光聚合物薄膜结构与光学性质的影响. 物理学报, 2012, 61(10): 106804. doi: 10.7498/aps.61.106804
    [8] 马姣民, 梁艳, 郜小勇, 陈超, 赵孟珂, 卢景霄. 射频磁控反应溅射制备的Ag2O薄膜的椭圆偏振光谱研究. 物理学报, 2012, 61(5): 056106. doi: 10.7498/aps.61.056106
    [9] 张增院, 郜小勇, 冯红亮, 马姣民, 卢景霄. 真空热退火温度对单相Ag2O薄膜微结构和光学性质的影响. 物理学报, 2011, 60(3): 036107. doi: 10.7498/aps.60.036107
    [10] 李建华, 曾祥华, 季正华, 胡益培, 陈宝, 范玉佩. ZnS掺Ag与Zn空位缺陷的电子结构和光学性质. 物理学报, 2011, 60(5): 057101. doi: 10.7498/aps.60.057101
    [11] 张增院, 郜小勇, 冯红亮, 马姣民, 卢景霄. 反应气压对直流磁控反应溅射制备的氧化银薄膜的结构和光学性质的影响. 物理学报, 2011, 60(1): 016110. doi: 10.7498/aps.60.016110
    [12] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [13] 邢海英, 范广涵, 杨学林, 张国义. 金属有机化学气相淀积技术制备GaMnN薄膜材料光学性质研究. 物理学报, 2010, 59(1): 504-507. doi: 10.7498/aps.59.504
    [14] 刘建军. 掺Ga对ZnO电子态密度和光学性质的影响. 物理学报, 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [15] 刘强, 程新路, 李德华, 杨则金. Al和N共掺对Zn1-xMgxO光学性质的影响. 物理学报, 2010, 59(12): 8829-8835. doi: 10.7498/aps.59.8829
    [16] 王伟娜, 方庆清, 周军, 王胜男, 闫方亮, 刘艳美, 李雁, 吕庆荣. 制备工艺对Zn1-xMgxO薄膜结构及光学性能的影响. 物理学报, 2009, 58(5): 3461-3467. doi: 10.7498/aps.58.3461
    [17] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究. 物理学报, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [18] 丁迎春, 向安平, 徐 明, 祝文军. 掺稀土元素(Y,La)的γ-Si3N4的电子结构和光学性质. 物理学报, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [19] 姜海青, 姚 熹, 车 俊, 汪敏强. ZnSe/SiO2复合薄膜光学常数与荧光光谱的研究. 物理学报, 2006, 55(4): 2084-2091. doi: 10.7498/aps.55.2084
    [20] 马建华, 孟祥建, 孙璟兰, 胡志高, 褚君浩. 化学溶液法制备的Bi3.25La0.75Ti3O12和 Bi3.25Nd0.75Ti3O12薄膜的光学特性. 物理学报, 2005, 54(8): 3900-3904. doi: 10.7498/aps.54.3900
计量
  • 文章访问数:  3924
  • PDF下载量:  509
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-26
  • 修回日期:  2011-06-01
  • 刊出日期:  2012-03-15

直流脉冲磁控反应溅射技术制备掺铝氧化锌薄膜的研究

  • 1. 郑州大学物理工程学院, 郑州 450052
    基金项目: 国家自然科学基金(批准号: 60807001)、河南省教育厅自然科学研究计划项目(批准号: 2010A140017)和郑州大学研究生创新基金项目(批准号: 11L1902)资助的课题.

摘要: 文章采用直流脉冲磁控反应溅射(DCPsputtering)技术,在不同氧氩比(GFR)条件下玻璃衬底上制备了一系列掺铝氧化锌(AZO)薄膜,并利用X射线衍射、扫描电子显微镜和分光光度计从宏观应力和微观晶格畸变的角度研究了GFR对薄膜结构、表面形貌和光学特性的影响.制备的多晶AZO薄膜呈现了明显的ZnO-(103)择优取向,这归结于3小时薄膜沉积过程中伴随的退火引起的薄膜晶面能转变.随着GFR的增大,AZO薄膜内宏观拉应力先增大到最大值,随后宏观压应力随着GFR的继续增大而增大.薄膜中的宏观应力明显随着GFR从拉应力向压应力转变.这与晶格微观畸变诱导的微观应力的研究结果趋势恰恰相反.随着GFR的增加,薄膜在可见光区的平均透射率先增加后减小,薄膜晶粒尺寸诱导的晶界散射是影响薄膜透射率的主导机制.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回