搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chetaev型约束的相对运动动力学系统Nielsen方程的Noether对称性与Noether守恒量

王肖肖 孙现亭 张美玲 解银丽 贾利群

引用本文:
Citation:

Chetaev型约束的相对运动动力学系统Nielsen方程的Noether对称性与Noether守恒量

王肖肖, 孙现亭, 张美玲, 解银丽, 贾利群

Noether symmetry and Noether conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type

Wang Xiao-Xiao, Sun Xian-Ting, Zhang Mei-Ling, Xie Yin-Li, Jia Li-Qun
PDF
导出引用
  • 研究Chetaev型约束的相对运动动力学系统Nielsen方程的Noether对称性与Noether守恒量. 对Chetaev型约束的相对运动力学系统Nielsen方程的运动微分方程、Noether对称性定义和判据进行具体的研究, 得到了Noether对称性直接导致的Noether守恒量的表达式. 最后举例说明结果的应用.
    Noether symmetry and Noether conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type are studied. The differential equation of motion of Nielsen equation for the system, the definition and the criterion of Noether symmetry, and the expression of Noether conserved quantity deduced directly from Noether symmetry for the system are obtained. An example is given to illustrate the application of the results.
      通信作者: 贾利群, 0000@163.com
    • 基金项目: 国家自然科学基金(批准号:1142014,61178032)资助的课题.
      Corresponding author: Jia Li-Qun, 0000@163.com
    • Funds: Project supported by the National Natural Secince Foundation of China (Grant Nos.11142014,61178032).
    [1]

    Noether A E 1918 Nachr.Akad.Wiss.G ttingen.Math.Phys.KIII 235

    [2]
    [3]

    Li Y,Fang J H,Zhang K J 2010 Journal of Dynamics and Control 8 300 (in Chinese) [李燕,方建会,张克军 2010动力学与控制学报 8 300]

    [4]

    Luo S K,Jia L Q,Cai J L 2005 Commun.Theor.Phys.43 193

    [5]
    [6]

    Chen X W,Luo S K,Mei F X 2002 Applied Mathematics and Mechanics 23 47 (in Chinese)[陈向炜,罗绍凯,梅凤翔 2002 应用数学和力学 23 47]

    [7]
    [8]

    Zhou Y X 2010 Journal of Zaozhuang University 27 6 (in Chinese)[周玉霞 2010 枣庄学院学报 27 6]

    [9]
    [10]

    Zhang Y,Mei F X 2004 Acta Phys.Sin.53 2419 (in Chinese) [张毅,梅凤翔 2004 物理学报 53 2419]

    [11]
    [12]

    Fu J L,Nie N M,Huang J F 2009 Chin.Phys.B 18 2634 (in Chinese)

    [13]
    [14]

    Luo S K 2007 Chin.Phys.Lett.24 2463

    [15]
    [16]
    [17]

    Luo S K 2007 Acta Phys.Sin.57 5580 (in Chinese) [罗绍凯 2007 物理学报 57 5580]

    [18]

    Luo S K,Huang F J,Lu Y B 2004 Chin.Phys.13 2182

    [19]
    [20]
    [21]

    Jia L Q,Cui J C,Zhang Y Y,Luo S K 2009 Acta Phys.Sin.58 16(in Chinese) [贾利群,崔金超,张耀宇,罗绍凯 2009 物理学报 58 16]

    [22]

    Mei F X,Shang M 2000 Acta Phys.Sin.49 1901 (in Chinese) [梅凤翔,尚玫 2000 物理学报 58 16]

    [23]
    [24]

    Luo S K,Chen X W,Guo Y X 2007 Chin.Phys.16 3176

    [25]
    [26]

    Luo S K 2007 Chin.Phys.Lett.24 2463

    [27]
    [28]
    [29]

    Jia L Q,Zhang Y Y,Zheng S W 2007 Journal of Ynunan University 29 589 (in Chinese) [贾利群,张耀宇,郑世旺 2007 云南大学学报 29 589]

    [30]

    Mei F X 2000 Journal of Beijing Institute of Technology 9 120 (in Chinese) [梅凤翔 2000 北京理工大学学报 9 120]

    [31]
    [32]

    Jia L Q,Luo S K,Zhang Y Y 2008 Acta Phys.Sin.57 2006 (in Chinese) [贾利群,罗绍凯,张耀宇 2008 物理学报 57 2006]

    [33]
    [34]

    Zheng S W,Xie J F,Chen X W,Du X L 2010 Acta Phys.Sin.59 5209 (in Chinese) [郑世旺,解加芳,陈向炜,杜雪莲 2010 物理学报 59 5209]

    [35]
    [36]
    [37]

    Yang X F,Jia L Q,Cui J C,Luo S K 2010 Chin.Phys.B 19 030305

    [38]
    [39]

    Jia L Q,Xie J F,Luo S K 2008 Chin.Phys.B 17 1560

    [40]
    [41]

    Cai J L 2009 Acta Phys.Sin.58 22 (in Chinese) [蔡建乐 2009 物理学报 58 22]

    [42]

    Djukic D S,Vujanovic B 1975 Acta Mechanica 23 17

    [43]
    [44]

    Bahar L Y,Kwatry H G 1987 Int.J.Non-Linear Mech.22 125

    [45]
    [46]
    [47]

    Li Z P 1981 Acta Phys.Sin.20 1659 (in Chinese) [李子平 1981 物理学报 20 1659]

    [48]

    Li Z P 1991 J.Phys.A:Math.Gen.24 4261

    [49]
    [50]

    Li Z P 1993 Classical and Quantum Constrained Systems and Symmetry (Beijing:Beijing industrial university Press) (in Chinese)[李子平 1993 经典和量子约束系统及其对称性质(北京:北京工业大学出版社)]

    [51]
    [52]
    [53]

    Dong W S,Huang B X,Fang J H 2011 Chin.Phys.B 20 010204

    [54]
    [55]

    Xia L L,Shan L F 2010 Chin.Phys.B 19 090302

    [56]

    Luo S K 2007 Chin.Phys.16 3182

    [57]
    [58]
    [59]

    Shi Y,Fu R,Ma S J 2007 Journal of University of Science and Technology of Suzhou (Natural Science Edition) 24 34 (in Chinese)[施勇,傅蓉,马善钧 2007 苏州科技学院学报 (自然科学版) 24 34]

    [60]
    [61]

    Ma S J,Liu M P,Huang P T 2005 Chin.Phys.14 244

    [62]

    Mei F X,Shui X P 2006 Journal of Beijing Institute of Technology 26 285 (in Chinese) [梅凤翔,水小平 2006 北京理工大学学报 26 285]

    [63]
    [64]
    [65]

    Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems(Beijing:Beijing Institute of Industrial Press) (in Chinese)[梅凤翔 1985 非完整系统力学基础 (北京: 北京工业学院出版社)]

    [66]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing:Science Press) (in Chinese)[梅凤翔 1999 李群和李代数对约束力学系统的应用(北京:科学出版社)]

    [67]
  • [1]

    Noether A E 1918 Nachr.Akad.Wiss.G ttingen.Math.Phys.KIII 235

    [2]
    [3]

    Li Y,Fang J H,Zhang K J 2010 Journal of Dynamics and Control 8 300 (in Chinese) [李燕,方建会,张克军 2010动力学与控制学报 8 300]

    [4]

    Luo S K,Jia L Q,Cai J L 2005 Commun.Theor.Phys.43 193

    [5]
    [6]

    Chen X W,Luo S K,Mei F X 2002 Applied Mathematics and Mechanics 23 47 (in Chinese)[陈向炜,罗绍凯,梅凤翔 2002 应用数学和力学 23 47]

    [7]
    [8]

    Zhou Y X 2010 Journal of Zaozhuang University 27 6 (in Chinese)[周玉霞 2010 枣庄学院学报 27 6]

    [9]
    [10]

    Zhang Y,Mei F X 2004 Acta Phys.Sin.53 2419 (in Chinese) [张毅,梅凤翔 2004 物理学报 53 2419]

    [11]
    [12]

    Fu J L,Nie N M,Huang J F 2009 Chin.Phys.B 18 2634 (in Chinese)

    [13]
    [14]

    Luo S K 2007 Chin.Phys.Lett.24 2463

    [15]
    [16]
    [17]

    Luo S K 2007 Acta Phys.Sin.57 5580 (in Chinese) [罗绍凯 2007 物理学报 57 5580]

    [18]

    Luo S K,Huang F J,Lu Y B 2004 Chin.Phys.13 2182

    [19]
    [20]
    [21]

    Jia L Q,Cui J C,Zhang Y Y,Luo S K 2009 Acta Phys.Sin.58 16(in Chinese) [贾利群,崔金超,张耀宇,罗绍凯 2009 物理学报 58 16]

    [22]

    Mei F X,Shang M 2000 Acta Phys.Sin.49 1901 (in Chinese) [梅凤翔,尚玫 2000 物理学报 58 16]

    [23]
    [24]

    Luo S K,Chen X W,Guo Y X 2007 Chin.Phys.16 3176

    [25]
    [26]

    Luo S K 2007 Chin.Phys.Lett.24 2463

    [27]
    [28]
    [29]

    Jia L Q,Zhang Y Y,Zheng S W 2007 Journal of Ynunan University 29 589 (in Chinese) [贾利群,张耀宇,郑世旺 2007 云南大学学报 29 589]

    [30]

    Mei F X 2000 Journal of Beijing Institute of Technology 9 120 (in Chinese) [梅凤翔 2000 北京理工大学学报 9 120]

    [31]
    [32]

    Jia L Q,Luo S K,Zhang Y Y 2008 Acta Phys.Sin.57 2006 (in Chinese) [贾利群,罗绍凯,张耀宇 2008 物理学报 57 2006]

    [33]
    [34]

    Zheng S W,Xie J F,Chen X W,Du X L 2010 Acta Phys.Sin.59 5209 (in Chinese) [郑世旺,解加芳,陈向炜,杜雪莲 2010 物理学报 59 5209]

    [35]
    [36]
    [37]

    Yang X F,Jia L Q,Cui J C,Luo S K 2010 Chin.Phys.B 19 030305

    [38]
    [39]

    Jia L Q,Xie J F,Luo S K 2008 Chin.Phys.B 17 1560

    [40]
    [41]

    Cai J L 2009 Acta Phys.Sin.58 22 (in Chinese) [蔡建乐 2009 物理学报 58 22]

    [42]

    Djukic D S,Vujanovic B 1975 Acta Mechanica 23 17

    [43]
    [44]

    Bahar L Y,Kwatry H G 1987 Int.J.Non-Linear Mech.22 125

    [45]
    [46]
    [47]

    Li Z P 1981 Acta Phys.Sin.20 1659 (in Chinese) [李子平 1981 物理学报 20 1659]

    [48]

    Li Z P 1991 J.Phys.A:Math.Gen.24 4261

    [49]
    [50]

    Li Z P 1993 Classical and Quantum Constrained Systems and Symmetry (Beijing:Beijing industrial university Press) (in Chinese)[李子平 1993 经典和量子约束系统及其对称性质(北京:北京工业大学出版社)]

    [51]
    [52]
    [53]

    Dong W S,Huang B X,Fang J H 2011 Chin.Phys.B 20 010204

    [54]
    [55]

    Xia L L,Shan L F 2010 Chin.Phys.B 19 090302

    [56]

    Luo S K 2007 Chin.Phys.16 3182

    [57]
    [58]
    [59]

    Shi Y,Fu R,Ma S J 2007 Journal of University of Science and Technology of Suzhou (Natural Science Edition) 24 34 (in Chinese)[施勇,傅蓉,马善钧 2007 苏州科技学院学报 (自然科学版) 24 34]

    [60]
    [61]

    Ma S J,Liu M P,Huang P T 2005 Chin.Phys.14 244

    [62]

    Mei F X,Shui X P 2006 Journal of Beijing Institute of Technology 26 285 (in Chinese) [梅凤翔,水小平 2006 北京理工大学学报 26 285]

    [63]
    [64]
    [65]

    Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems(Beijing:Beijing Institute of Industrial Press) (in Chinese)[梅凤翔 1985 非完整系统力学基础 (北京: 北京工业学院出版社)]

    [66]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing:Science Press) (in Chinese)[梅凤翔 1999 李群和李代数对约束力学系统的应用(北京:科学出版社)]

    [67]
  • [1] 刘世兴, 宋端, 贾林, 刘畅, 郭永新. 辛Runge-Kutta方法在求解Lagrange-Maxwell方程中的应用研究. 物理学报, 2013, 62(3): 034501. doi: 10.7498/aps.62.034501
    [2] 徐瑞莉, 方建会, 张斌. 离散差分序列变质量Hamilton系统的Lie对称性与Noether守恒量. 物理学报, 2013, 62(15): 154501. doi: 10.7498/aps.62.154501
    [3] 徐超, 李元成. 奇异变质量单面非完整系统Nielsen方程的Noether-Lie对称性与守恒量. 物理学报, 2013, 62(17): 171101. doi: 10.7498/aps.62.171101
    [4] 徐超, 李元成. 奇异 Chetaev型非完整系统Nielsen方程的Lie-Mei对称性与守恒量. 物理学报, 2013, 62(12): 120201. doi: 10.7498/aps.62.120201
    [5] 王肖肖, 张美玲, 韩月林, 贾利群. Chetaev型非完整约束相对运动动力学系统Nielsen方程的Mei对称性和Mei守恒量. 物理学报, 2012, 61(20): 200203. doi: 10.7498/aps.61.200203
    [6] 贾利群, 孙现亭, 张美玲, 王肖肖, 解银丽. Nielsen方程Mei对称性导致的一种新型守恒量. 物理学报, 2011, 60(8): 084501. doi: 10.7498/aps.60.084501
    [7] 贾利群, 解银丽, 罗绍凯. 相对运动动力学系统Appell方程Mei对称性导致的Mei守恒量. 物理学报, 2011, 60(4): 040201. doi: 10.7498/aps.60.040201
    [8] 解银丽, 贾利群, 杨新芳. 相对运动动力学系统Nielsen方程的Lie对称性与Hojman守恒量. 物理学报, 2011, 60(3): 030201. doi: 10.7498/aps.60.030201
    [9] 刘畅, 赵永红, 陈向炜. 动力学系统Noether对称性的几何表示. 物理学报, 2010, 59(1): 11-14. doi: 10.7498/aps.59.11
    [10] 李元成, 王小明, 夏丽莉. 完整系统Nielsen方程的统一对称性与守恒量. 物理学报, 2010, 59(5): 2935-2938. doi: 10.7498/aps.59.2935
    [11] 贾利群, 崔金超, 张耀宇, 罗绍凯. Chetaev型约束力学系统Appell方程的Lie对称性与守恒量. 物理学报, 2009, 58(1): 16-21. doi: 10.7498/aps.58.16
    [12] 崔建新, 高海波, 洪文学. 超细长弹性杆的Mei对称性及其Noether守恒量. 物理学报, 2009, 58(11): 7426-7430. doi: 10.7498/aps.58.7426
    [13] 施沈阳, 黄晓虹, 张晓波, 金立. 离散差分变分Hamilton系统的Lie对称性与Noether守恒量. 物理学报, 2009, 58(6): 3625-3631. doi: 10.7498/aps.58.3625
    [14] 梅凤翔, 吴惠彬. 相对运动动力学系统的Lagrange对称性. 物理学报, 2009, 58(9): 5919-5922. doi: 10.7498/aps.58.5919
    [15] 贾利群, 崔金超, 罗绍凯, 张耀宇. 事件空间中单面非Chetaev型非完整系统Nielsen方程的Mei对称性与Mei守恒量. 物理学报, 2009, 58(4): 2141-2146. doi: 10.7498/aps.58.2141
    [16] 贾利群, 罗绍凯, 张耀宇. 非完整系统Nielsen方程的Mei对称性与Mei守恒量. 物理学报, 2008, 57(4): 2006-2010. doi: 10.7498/aps.57.2006
    [17] 方建会, 丁 宁, 王 鹏. 非完整力学系统的Noether-Lie对称性. 物理学报, 2006, 55(8): 3817-3820. doi: 10.7498/aps.55.3817
    [18] 葛伟宽, 张 毅. 完整力学系统的Lie-形式不变性. 物理学报, 2005, 54(11): 4985-4988. doi: 10.7498/aps.54.4985
    [19] 许学军, 梅凤翔, 秦茂昌. 非保守Nielsen方程的形式不变性导致的非Noether守恒量. 物理学报, 2004, 53(12): 4021-4025. doi: 10.7498/aps.53.4021
    [20] 方建会, 薛庆忠, 赵嵩卿. 非保守力学系统Nielsen方程的形式不变性. 物理学报, 2002, 51(10): 2183-2185. doi: 10.7498/aps.51.2183
计量
  • 文章访问数:  4141
  • PDF下载量:  650
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-21
  • 修回日期:  2011-07-18
  • 刊出日期:  2012-03-05

Chetaev型约束的相对运动动力学系统Nielsen方程的Noether对称性与Noether守恒量

  • 1. 江南大学理学院,无锡 214122;
  • 2. 平顶山学院电气信息工程学院,平顶山 467002
  • 通信作者: 贾利群, 0000@163.com
    基金项目: 国家自然科学基金(批准号:1142014,61178032)资助的课题.

摘要: 研究Chetaev型约束的相对运动动力学系统Nielsen方程的Noether对称性与Noether守恒量. 对Chetaev型约束的相对运动力学系统Nielsen方程的运动微分方程、Noether对称性定义和判据进行具体的研究, 得到了Noether对称性直接导致的Noether守恒量的表达式. 最后举例说明结果的应用.

English Abstract

参考文献 (67)

目录

    /

    返回文章
    返回