搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高灵敏度集成光偏振干涉仪特性及生化传感应用研究

逯丹凤 祁志美

引用本文:
Citation:

高灵敏度集成光偏振干涉仪特性及生化传感应用研究

逯丹凤, 祁志美

Characterization and chemical/biosensing application of a high-sensitivity integrated optical polarimetric interferometer

Lu Dan-Feng, Qi Zhi-Mei
PDF
导出引用
  • 利用射频溅射技术在平面单模玻璃波导表面局部淀积一层Ta2O5梯度薄膜, 形成复合光波导芯片, 结合棱镜耦合法制备了一种集成光偏振干涉传感器. 基于四层平板波导模型理论分析了复合光波导表面折射率灵敏度SRI与Ta2O5梯度薄膜等效厚度Teq的关系, 结合实验测定的SRI得出了本工作中所使用Ta2O5梯度薄膜的Teq 33.021 nm, 进一步得出芯片吸附层厚度灵敏度Sab (2.412 2) nm-1. 利用该复合波导偏振干涉仪结合Lorentz-Lorenz有效介质理论测得了市售食用白醋中醋酸的浓度, 并以市售牛栏山二锅头酒为例进行了白酒掺水和掺甲醇的测试, 结果表明, 白酒掺水或甲醇前后的折射率改变量与掺杂量成准线性变化关系; 原位实时监测了丁酰胆碱酯酶的动态吸附过程及细胞色素c/聚苯乙烯磺酸钠的分子自组装过程, 并利用测得的位相差变化结合芯片吸附层厚度灵敏度Sab 获得了蛋白质表面覆盖度.
    A tapered thin film of Ta2O5 is sputtered on a single-mode slab glass waveguide to form a composite optical waveguide (COWG) for serving as a prism-coupled integrated optical polarimetric interferometer. The relationship between the refractive-index sensitivity (SRI) of the interferometer and the equivalent thickness (Teq) for the tapered layer of Ta2O5 is theoretically analyzed based on a four-layer homogeneous waveguide model. A comparison of the measured SRI with the simulated data leads to Teq 33.021 nm for the COWG used. The sensitivity of the interferometer to thickness of the protein adlayer is determined to be Sab (2.412 2)/nm. The acetic-acid concentration of a commercial Chinese vinegar is investigated, for the first time, by use of the interferometer combined with the Lorentz-Lorenz effective-medium theory. Water and methanol adulterations of a commercial Chinese liquor are detected with the interferometer. The results indicate that the refractive-index change induced by the adulteration is a quasi-linear function of the adulteration amount. Both the dynamic adsorption process of butyrylcholinesterase and the self-assembly process of cytochrome c/PSS multilayer film are monitored in real time with the sensor. The protein surface coverage is obtained from the combination of the measured phase-difference change and the adlayer-thickness sensitivity.
    • 基金项目: 国家自然科学基金 (批准号: 60978042, 61078039)、 国家重点基础研究发展计划 (批准号: 2009CB320300) 和中国科学院百人计划基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978042, 61078039), the National Basic Research Program of China (Grant No. 2009CB320300), and the '100 Talents Project' of Chinese Academy of Sciences, China.
    [1]

    Wu X F, Zhang J S, Li Z, Liu Y L, Gong Q H 2009 Chin. Phys. Lett. 26 057302

    [2]

    Stamm Ch, Lukosz W 1996 Sens. Actuators B 31 203

    [3]

    Klotz A, Brecht A, Gauglitz G 1997 Sens. Actuators B 38-39 310

    [4]

    Schmitt K, Oehse K, Sulz G, Hoffmann C 2008 Sensor 8 711

    [5]

    Qi Z M, Matsuda N, Takatsu, Kato K 2004 Langmuir 20 778

    [6]

    Yimit A, Rossberg A G, Amemiya T, Itoh K 2005 Talanta 65 1102

    [7]

    Ymeti A, Greve J, Lambeck P V, Wink T, Van Hövell S W F M, Beumer T A M, Wijn R R, Heideman R G, Subramaniam V, Kanger J S 2007 Nano. Lett. 7 394

    [8]

    Zinoviev K, Dominguez C, Plaza J A, Busto V J C, Lechuga L M 2006 J. Lightwave Technol. 24 2132

    [9]

    Irace A, Breglio G 2003 Opt. Express 11 2807

    [10]

    Ricard-Blum S, Peel L L, Ruggiero F, Freeman N J 2006 Anal. Biochem. 352 252

    [11]

    http: //www.owls-sensors.com/[2000-2011]

    [12]

    Hao P, Wu Y H, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [郝鹏, 吴一辉, 张平 2010 物理学报 59 6532]

    [13]

    Gong Y, Guo Y, Rao Y J, Zhao T, Wu Y, Ran Z L 2011 Acta Phys. Sin. 60 064202 (in Chinese) [龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令 2011 物理学报 60 064202]

    [14]

    Qi Z M, Itoh K, Murabayashi M, Yanagi H 2000 J. Lightwave Technol. 18 1106

    [15]

    Lu D F, Qi Z M 2010 Chin. Phys. Lett. 27 104206

    [16]

    Lu D F, Qi Z M 2011 Sens. Actuators B 157 575

    [17]

    De Feijter J A, Benjamins J, Veer F A 1978 Biopolymers 17 1759

    [18]

    Aspnes D E 1982 Am. J. Phys. 50 704

    [19]

    Granados K, Gracia-Fadrique J, Amigo A, Bravo R 2006 J. Chem. Eng. Data 51 1356

    [20]

    Dzyadevych S V, Arkhypova V N, Martelet C, Jaffrezic-Renault N, Chovelon J M, El'skaya A V, Soldatkin A P 2004 Electroanalysis 16 1873

    [21]

    Topoglidis E, Campbell C J, Cass A E G, Durrant J R 2001 Langmuir 17 7899

    [22]

    Kosmulski M 1997 Langmuir 13 6315

  • [1]

    Wu X F, Zhang J S, Li Z, Liu Y L, Gong Q H 2009 Chin. Phys. Lett. 26 057302

    [2]

    Stamm Ch, Lukosz W 1996 Sens. Actuators B 31 203

    [3]

    Klotz A, Brecht A, Gauglitz G 1997 Sens. Actuators B 38-39 310

    [4]

    Schmitt K, Oehse K, Sulz G, Hoffmann C 2008 Sensor 8 711

    [5]

    Qi Z M, Matsuda N, Takatsu, Kato K 2004 Langmuir 20 778

    [6]

    Yimit A, Rossberg A G, Amemiya T, Itoh K 2005 Talanta 65 1102

    [7]

    Ymeti A, Greve J, Lambeck P V, Wink T, Van Hövell S W F M, Beumer T A M, Wijn R R, Heideman R G, Subramaniam V, Kanger J S 2007 Nano. Lett. 7 394

    [8]

    Zinoviev K, Dominguez C, Plaza J A, Busto V J C, Lechuga L M 2006 J. Lightwave Technol. 24 2132

    [9]

    Irace A, Breglio G 2003 Opt. Express 11 2807

    [10]

    Ricard-Blum S, Peel L L, Ruggiero F, Freeman N J 2006 Anal. Biochem. 352 252

    [11]

    http: //www.owls-sensors.com/[2000-2011]

    [12]

    Hao P, Wu Y H, Zhang P 2010 Acta Phys. Sin. 59 6532 (in Chinese) [郝鹏, 吴一辉, 张平 2010 物理学报 59 6532]

    [13]

    Gong Y, Guo Y, Rao Y J, Zhao T, Wu Y, Ran Z L 2011 Acta Phys. Sin. 60 064202 (in Chinese) [龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令 2011 物理学报 60 064202]

    [14]

    Qi Z M, Itoh K, Murabayashi M, Yanagi H 2000 J. Lightwave Technol. 18 1106

    [15]

    Lu D F, Qi Z M 2010 Chin. Phys. Lett. 27 104206

    [16]

    Lu D F, Qi Z M 2011 Sens. Actuators B 157 575

    [17]

    De Feijter J A, Benjamins J, Veer F A 1978 Biopolymers 17 1759

    [18]

    Aspnes D E 1982 Am. J. Phys. 50 704

    [19]

    Granados K, Gracia-Fadrique J, Amigo A, Bravo R 2006 J. Chem. Eng. Data 51 1356

    [20]

    Dzyadevych S V, Arkhypova V N, Martelet C, Jaffrezic-Renault N, Chovelon J M, El'skaya A V, Soldatkin A P 2004 Electroanalysis 16 1873

    [21]

    Topoglidis E, Campbell C J, Cass A E G, Durrant J R 2001 Langmuir 17 7899

    [22]

    Kosmulski M 1997 Langmuir 13 6315

  • [1] 段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清. 宽带腔增强吸收光谱技术应用于大气NO3自由基的测量. 物理学报, 2021, 70(1): 010702. doi: 10.7498/aps.70.20201066
    [2] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [3] 田晶, 侯美江, 江阳, 张红旭, 白光富, 冯豪. 一种高灵敏度复合环形腔结构的光纤激光拍频位移传感方案. 物理学报, 2020, 69(18): 184217. doi: 10.7498/aps.69.20200385
    [4] 周子昕, 黄印博, 卢兴吉, 袁子豪, 曹振松. 2 μm波段再入射离轴积分腔输出光谱设计与实验. 物理学报, 2019, 68(12): 129201. doi: 10.7498/aps.68.20190061
    [5] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [6] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪. 物理学报, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [7] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究. 物理学报, 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [8] 池浪, 费洪涛, 王腾, 易建鹏, 方月婷, 夏瑞东. 基于有机半导体激光材料的高灵敏度溶液检测传感器件. 物理学报, 2016, 65(6): 064202. doi: 10.7498/aps.65.064202
    [9] 李克武, 王志斌, 陈友华, 杨常青, 张瑞. 基于弹光调制的高灵敏旋光测量. 物理学报, 2015, 64(18): 184206. doi: 10.7498/aps.64.184206
    [10] 安萍, 郭浩, 陈萌, 赵苗苗, 杨江涛, 刘俊, 薛晨阳, 唐军. 碳纳米管/聚二甲基硅氧烷复合薄膜的制备及力敏特性研究. 物理学报, 2014, 63(23): 237306. doi: 10.7498/aps.63.237306
    [11] 吴健雄, 程腾, 张青川, 高杰, 伍小平. 光学读出红外成像中面光源影响下的光学检测灵敏度研究. 物理学报, 2013, 62(22): 220703. doi: 10.7498/aps.62.220703
    [12] 田赫, 孙伟民, 掌蕴东. 耦合谐振器光波导旋转传感的相位灵敏度. 物理学报, 2013, 62(19): 194204. doi: 10.7498/aps.62.194204
    [13] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [14] 张喆, 柳倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究. 物理学报, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [15] 娄淑琴, 王鑫, 尹国路, 韩博琳. 基于侧漏型光子晶体光纤高灵敏度宽线性范围弯曲传感器的研究. 物理学报, 2013, 62(19): 194209. doi: 10.7498/aps.62.194209
    [16] 蔡元学, 掌蕴东, 党博石, 吴昊, 王金芳, 袁萍. 基于Ⅲ-Ⅴ与Ⅱ-Ⅵ族半导体材料色散特性的高灵敏度慢光干涉仪. 物理学报, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [17] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [18] 张锦龙, 余重秀, 王葵如, 赵德新, 林妹妹, 李成. 基于偏振干涉的光纤光栅传感解调方法. 物理学报, 2009, 58(6): 3988-3995. doi: 10.7498/aps.58.3988
    [19] 章法强, 杨建伦, 李正宏, 钟耀华, 叶 凡, 秦 义, 陈法新, 应纯同, 刘广均. 高灵敏度的快中子照相系统. 物理学报, 2007, 56(1): 583-588. doi: 10.7498/aps.56.583
    [20] 李明轩. 声阻法中检测阻抗的测量和提高检测器灵敏度的设计. 物理学报, 1974, 23(3): 3-12. doi: 10.7498/aps.23.3-2
计量
  • 文章访问数:  3901
  • PDF下载量:  512
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-10
  • 修回日期:  2012-06-05
  • 刊出日期:  2012-06-05

高灵敏度集成光偏振干涉仪特性及生化传感应用研究

  • 1. 中国科学院电子学研究所, 传感技术联合国家重点实验室, 北京 100190
    基金项目: 国家自然科学基金 (批准号: 60978042, 61078039)、 国家重点基础研究发展计划 (批准号: 2009CB320300) 和中国科学院百人计划基金资助的课题.

摘要: 利用射频溅射技术在平面单模玻璃波导表面局部淀积一层Ta2O5梯度薄膜, 形成复合光波导芯片, 结合棱镜耦合法制备了一种集成光偏振干涉传感器. 基于四层平板波导模型理论分析了复合光波导表面折射率灵敏度SRI与Ta2O5梯度薄膜等效厚度Teq的关系, 结合实验测定的SRI得出了本工作中所使用Ta2O5梯度薄膜的Teq 33.021 nm, 进一步得出芯片吸附层厚度灵敏度Sab (2.412 2) nm-1. 利用该复合波导偏振干涉仪结合Lorentz-Lorenz有效介质理论测得了市售食用白醋中醋酸的浓度, 并以市售牛栏山二锅头酒为例进行了白酒掺水和掺甲醇的测试, 结果表明, 白酒掺水或甲醇前后的折射率改变量与掺杂量成准线性变化关系; 原位实时监测了丁酰胆碱酯酶的动态吸附过程及细胞色素c/聚苯乙烯磺酸钠的分子自组装过程, 并利用测得的位相差变化结合芯片吸附层厚度灵敏度Sab 获得了蛋白质表面覆盖度.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回