搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小型化结构的各向同性负磁导率材料与左手材料

刘亚红 刘辉 赵晓鹏

引用本文:
Citation:

基于小型化结构的各向同性负磁导率材料与左手材料

刘亚红, 刘辉, 赵晓鹏

Isotropic negative permeability metamaterials and left-handed metamaterials based on miniature structure

Liu Ya-Hong, Liu Hui, Zhao Xiao-Peng
PDF
导出引用
  • 提出了一种双面环各向同性结构单元模型, 理论与实验研究了其微波电磁谐振行为. 结果表明: 在电磁波平行入射和垂直入射条件下, 该结构可在同一频段实现磁谐振, 且在谐振频段磁导率为负; 当电磁波以不同角度斜入射时, 其产生负磁导率频段也保持不变, 即该结构的电磁特性不依赖于入射角度, 双面环结构具有各向同性的特点. 将双面环结构与金属线结构组合, 该组合结构具有负折射率. 另外,双面环结构还具有小型化的优点, 在不增加结构单元几何尺寸的情况下, 通过在结构单元中引入金属化过孔的方法, 增加结构单元的电长度, 可使谐振频率大幅度地向低频方向移动, 使其在低频工作时 仍保持小型化的优点. 在双面环结构中引入金属化过孔技术可使谐振单元的几何尺寸减小50%, 在微波器件、滤波器、天线等领域有广阔的应用前景.
    We propose an isotropic structure based on double split-ring resonator. We investigate experimentally and numerically the electromagnetic resonant properties of the proposed structure. The result shows that when the electromagnetic wave transmits in the directions parallel and perpendicular to the plane of the split ring resonator, respectively, the resonant bands having the negative permeability both arise at the same frequencies. However, when the electromagnetic wave transmits with oblique angle, the resonant characteristic is still unchanged. That is to say, resonant characteristic of the proposed structure is independent of incidence angle. This result indicates that the proposed structure is an isotropic medium. Combining the proposed double split-ring resonator structure with the wires, the left-handed metamaterial with negative refractive index can be obtained. In addition, the proposed structure has the merit of the miniaturization due to adding the metallic via-hole, which can increase the electric length of the structure. As a result, the resonant frequency of the structure shifts toward lower frequency greatly without increasing the dimension of the structure, and then the structure is still compact in the low frequency case. The introduction of the metallic via-hole can reduce the dimension of the structure by 50%. Therefore, the proposed structure will be a good candidate in the microwave applications such as antennas, filter, among others.
    • 基金项目: 国家自然科学基金(批准号: 50872113,50936002)和 西北工业大学基础研究基金(批准号: JC201154)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50872113, 50936002) and the Foundation for Fundamental Research of Northwestern Polytechnical University, China (Grant No. JC201154).
    [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [3]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075

    [4]

    Shelby R, Smith D R, Schultz S 2001 Science 292 77

    [5]

    Zhou X, Fu Q H, Zhao J, Yang Y, Zhao X P 2006 Opt. Express 14 7188

    [6]

    Zhao X P, Zhao Q, Zhang F L, Zhao W, Liu Y H 2006 Chin. Phys. Lett. 23 99

    [7]

    Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (in Chinese) [刘亚红, 罗春荣, 赵晓鹏 2007 物理学报 56 5883]

    [8]

    Gong B Y, Zhao X P 2011 Opt. Express 19 289

    [9]

    Zhou X, Zhao X P 2007 Appl. Phys. Lett. 91 181908

    [10]

    Zhu W R, Zhao X P, Gong B Y, Liu L H, Su B 2011 Appl. Phys. A 102 147

    [11]

    Liu Y H, Song J, Luo C R, Fu Q H, Zhao X P 2008 Acta Phys. Sin. 57 934 (in Chinese) [刘亚红, 宋娟, 罗春荣, 付全红, 赵晓鹏 2008 物理学报 57 934]

    [12]

    Zhu W R, Zhao X P, Ji N 2007 Appl. Phys. Lett. 90 011911

    [13]

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张燕萍, 赵晓鹏 2010 物理学报 59 3187]

    [14]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [15]

    Linden S, Enkrich C, Wegener M, Zhou J F, Koschny T, Soukoulis C M 2004 Science 306 1351

    [16]

    Zhang S, Fan W J, Minhas B K, Frauenglass A, Malloy K J, Brueck S R J 2005 Phys. Rev. Lett. 94 037402

    [17]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301

    [18]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602

    [19]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [20]

    Nguyen V C, Chen L, Halterman K 2010 Phys. Rev. Lett. 105 233908

    [21]

    Furlani E P, Baev A 2009 Phys. Rev. E 79 026607

    [22]

    Jin Y, He S L 2010 Opt. Express 18 16587

    [23]

    Dolling G, Wegener M, Soukoulis C M, Linden S 2007 Opt. Express 15 11536

    [24]

    Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C M, Economou E N 2007 Phys. Rev. E 75 235114

    [25]

    Zhou J F, Koschny T, Zhang L, Tuttle G, Soukoulis C M 2006 Appl. Phys. Lett. 88 221103

    [26]

    Baena J D, Jelinek L, Marqués R, Mock J J, Gollub J, Smith D R 2007 Appl. Phys. Lett. 91 191105

    [27]

    Casse B D F, Moser H O, Lee J W, Bahou M, Inglis S, Jian L K 2007 Appl. Phys. Lett. 90 254106

    [28]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [29]

    Chen X D, Grzegorczyk T M, Wu B I, Pacheco J Jr, Kong J A 2004 Phys. Rev. E 70 016608

  • [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [3]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075

    [4]

    Shelby R, Smith D R, Schultz S 2001 Science 292 77

    [5]

    Zhou X, Fu Q H, Zhao J, Yang Y, Zhao X P 2006 Opt. Express 14 7188

    [6]

    Zhao X P, Zhao Q, Zhang F L, Zhao W, Liu Y H 2006 Chin. Phys. Lett. 23 99

    [7]

    Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (in Chinese) [刘亚红, 罗春荣, 赵晓鹏 2007 物理学报 56 5883]

    [8]

    Gong B Y, Zhao X P 2011 Opt. Express 19 289

    [9]

    Zhou X, Zhao X P 2007 Appl. Phys. Lett. 91 181908

    [10]

    Zhu W R, Zhao X P, Gong B Y, Liu L H, Su B 2011 Appl. Phys. A 102 147

    [11]

    Liu Y H, Song J, Luo C R, Fu Q H, Zhao X P 2008 Acta Phys. Sin. 57 934 (in Chinese) [刘亚红, 宋娟, 罗春荣, 付全红, 赵晓鹏 2008 物理学报 57 934]

    [12]

    Zhu W R, Zhao X P, Ji N 2007 Appl. Phys. Lett. 90 011911

    [13]

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张燕萍, 赵晓鹏 2010 物理学报 59 3187]

    [14]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [15]

    Linden S, Enkrich C, Wegener M, Zhou J F, Koschny T, Soukoulis C M 2004 Science 306 1351

    [16]

    Zhang S, Fan W J, Minhas B K, Frauenglass A, Malloy K J, Brueck S R J 2005 Phys. Rev. Lett. 94 037402

    [17]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301

    [18]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602

    [19]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [20]

    Nguyen V C, Chen L, Halterman K 2010 Phys. Rev. Lett. 105 233908

    [21]

    Furlani E P, Baev A 2009 Phys. Rev. E 79 026607

    [22]

    Jin Y, He S L 2010 Opt. Express 18 16587

    [23]

    Dolling G, Wegener M, Soukoulis C M, Linden S 2007 Opt. Express 15 11536

    [24]

    Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C M, Economou E N 2007 Phys. Rev. E 75 235114

    [25]

    Zhou J F, Koschny T, Zhang L, Tuttle G, Soukoulis C M 2006 Appl. Phys. Lett. 88 221103

    [26]

    Baena J D, Jelinek L, Marqués R, Mock J J, Gollub J, Smith D R 2007 Appl. Phys. Lett. 91 191105

    [27]

    Casse B D F, Moser H O, Lee J W, Bahou M, Inglis S, Jian L K 2007 Appl. Phys. Lett. 90 254106

    [28]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [29]

    Chen X D, Grzegorczyk T M, Wu B I, Pacheco J Jr, Kong J A 2004 Phys. Rev. E 70 016608

  • [1] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [2] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体 . 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [3] 徐新河, 肖绍球, 甘月红, 付崇芳, 王秉中. 交指电容加载的周期性对称负磁导率人工材料研究. 物理学报, 2012, 61(12): 124103. doi: 10.7498/aps.61.124103
    [4] 李俊成, 郭立新, 刘松华. THz频段单面左手材料的设计及仿真研究. 物理学报, 2012, 61(12): 124102. doi: 10.7498/aps.61.124102
    [5] 弓巧侠, 赵双双, 段智勇, 马凤英. 结构参量对左手材料通带位置影响的研究. 物理学报, 2011, 60(10): 107804. doi: 10.7498/aps.60.107804
    [6] 杨一鸣, 王甲富, 屈绍波, 柏鹏, 李哲, 夏颂, 王军, 徐卓. 基于高介电常数基板和金属结构负折射材料的设计,仿真与验证. 物理学报, 2011, 60(5): 054103. doi: 10.7498/aps.60.054103
    [7] 龚伯仪, 周欣, 赵晓鹏. 光频三维各向同性左手超材料结构单元模型的仿真设计. 物理学报, 2011, 60(4): 044101. doi: 10.7498/aps.60.044101
    [8] 唐明春, 肖绍球, 邓天伟, 柏艳英, 官剑, 王秉中. 小型化电谐振人工特异材料研究. 物理学报, 2010, 59(7): 4715-4719. doi: 10.7498/aps.59.4715
    [9] 朱忠奎, 罗春荣, 赵晓鹏. 一种新型的树枝状负磁导率材料微带天线. 物理学报, 2009, 58(9): 6152-6157. doi: 10.7498/aps.58.6152
    [10] 张松, 屈绍波, 马华, 谢峰, 徐卓. 基于平行金属条的左手结构设计与仿真研究. 物理学报, 2009, 58(6): 3961-3965. doi: 10.7498/aps.58.3961
    [11] 刘亚红, 宋 娟, 罗春荣, 付全红, 赵晓鹏. 垂直入射条件下厚金属环结构的负磁导率与左手材料行为. 物理学报, 2008, 57(2): 934-939. doi: 10.7498/aps.57.934
    [12] 武明峰, 孟繁义, 傅佳辉, 吴 群, 吴 健. 新型小型化的平面左手介质微带线及其后向波特性验证. 物理学报, 2008, 57(2): 822-826. doi: 10.7498/aps.57.822
    [13] 陈 亮, 梁昌洪, 党晓杰. 非线性左手材料中的二次谐波. 物理学报, 2007, 56(11): 6398-6402. doi: 10.7498/aps.56.6398
    [14] 刘亚红, 罗春荣, 赵晓鹏. 同时实现介电常数和磁导率为负的H型结构单元左手材料. 物理学报, 2007, 56(10): 5883-5889. doi: 10.7498/aps.56.5883
    [15] 郑 晴, 赵晓鹏, 李明明, 赵 晶. 缺陷对左手材料负折射的调控行为. 物理学报, 2006, 55(12): 6441-6446. doi: 10.7498/aps.55.6441
    [16] 武明峰, 孟繁义, 吴 群, 吴 健. 基于左手介质后向波特性的微带天线小型化研究. 物理学报, 2006, 55(12): 6368-6373. doi: 10.7498/aps.55.6368
    [17] 罗春荣, 康 雷, 赵 乾, 付全红, 宋 娟, 赵晓鹏. 非均匀缺陷环对微波左手材料的影响. 物理学报, 2005, 54(4): 1607-1612. doi: 10.7498/aps.54.1607
    [18] 郑 晴, 赵晓鹏, 付全红, 赵 乾, 康 雷, 李明明. 左手材料的反射特性与负折射率行为. 物理学报, 2005, 54(12): 5683-5687. doi: 10.7498/aps.54.5683
    [19] 赵 乾, 赵晓鹏, 康 雷, 张富利, 刘亚红, 罗春荣. 一维负磁导率材料中的缺陷效应. 物理学报, 2004, 53(7): 2206-2211. doi: 10.7498/aps.53.2206
    [20] 康 雷, 赵 乾, 赵晓鹏. 二维负磁导率材料中的缺陷效应. 物理学报, 2004, 53(10): 3379-3383. doi: 10.7498/aps.53.3379
计量
  • 文章访问数:  4299
  • PDF下载量:  941
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-16
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

基于小型化结构的各向同性负磁导率材料与左手材料

  • 1. 西北工业大学理学院, 西安 710072
    基金项目: 国家自然科学基金(批准号: 50872113,50936002)和 西北工业大学基础研究基金(批准号: JC201154)资助的课题.

摘要: 提出了一种双面环各向同性结构单元模型, 理论与实验研究了其微波电磁谐振行为. 结果表明: 在电磁波平行入射和垂直入射条件下, 该结构可在同一频段实现磁谐振, 且在谐振频段磁导率为负; 当电磁波以不同角度斜入射时, 其产生负磁导率频段也保持不变, 即该结构的电磁特性不依赖于入射角度, 双面环结构具有各向同性的特点. 将双面环结构与金属线结构组合, 该组合结构具有负折射率. 另外,双面环结构还具有小型化的优点, 在不增加结构单元几何尺寸的情况下, 通过在结构单元中引入金属化过孔的方法, 增加结构单元的电长度, 可使谐振频率大幅度地向低频方向移动, 使其在低频工作时 仍保持小型化的优点. 在双面环结构中引入金属化过孔技术可使谐振单元的几何尺寸减小50%, 在微波器件、滤波器、天线等领域有广阔的应用前景.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回