搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

惯性约束聚变点火靶候选靶丸特点及制备研究进展

张占文 漆小波 李波

引用本文:
Citation:

惯性约束聚变点火靶候选靶丸特点及制备研究进展

张占文, 漆小波, 李波

Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments

Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo
PDF
导出引用
  • 获得能量增益实现点火是目前激光惯性约束聚变领域研究的主要方向和标志性成果. 在点火靶的设计中有多种可能的候选靶丸,包括碳氢掺杂锗、铍掺杂铜、聚酰亚胺、 碳化硼和金刚石靶丸,其中碳氢和铍靶丸是最主要的候选靶丸.文中主要总结了几种候选靶丸的优缺点及目前研制现状.在国外,碳氢靶丸是目前点火靶的首选靶丸. 与铍靶丸相比,不存在明显的微结构缺陷,制备较容易;靶丸光学透明, 适宜于燃料分层和表征;靶丸在制备上更容易达到点火靶要求. 美国的碳氢点火靶靶丸基本达到了设计要求,这些要求包括几何尺寸、壳层密度、 壳层缺陷、表面光洁度、掺杂水平和杂质含量等.我国的点火靶靶丸研究还处在起步阶段.
    The inertial confinement fusion program has proposed a laser capable of producing ignition and gain as the next step. Several choices exist in the design and production of capsules. In this paper the important features of each ablator material and the status of production are summarized. The design consists of ablators made of germanium-doped carbon hydrogen (CH), beryllium doped copper, polyimide, B4C and diamond. The CH and beryllium capsules are two of the most important choices. Compared with the beryllium shell, the CH shell has no microstructure and has a transparent wall that allows optical characterization of the fuel ice layer. The CH shell has the advantage that the specification can be easy to satisfy the ignition acquirements. The current ignition point has been designed in USA since 2010. The ignition target design has a series of demands for the capsule, such as capsule dimensions, coating density, void defects and volume, surface roughness, uniformity, doping and impurity levels. Now, the CH capsule can meet ignition requirements in USA, while the relevant work has just started in China.
    [1]

    Tabak M, Hammer J M, Glinsky M E 1994 Phys. Plasmas 1 1626

    [2]

    Lindl J D 1995 Phys. Plasmas 2 3933

    [3]

    Haan S W, Callahan D A, Edwards M J 2009 Fusion Sci. Technol. 55 227

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2003 Phys. Plasmas 11 339

    [5]

    Dittrich T R, Haan S W, Pollaine S, Burnharm A K 1997 Fusion Technol. 31 402

    [6]

    Dittrich T R, Haan S W, Marinak M M, Pollaine S M, McEachern R 1998 Phys. Plasmas 5 3708

    [7]

    McQuillan B W, Nikroo A, Steinman D A, Elsner F H, Czechowicz D G, Hoppe M L, Sixtus M, Miller W J 1997 Fusion Technol. 31 381

    [8]

    Fearon E M, Letts S A, Allison L M, Cook R C 1997 Fusion Technol. 31 406

    [9]

    Nikroo A, Pontelandolfo J M 2000 Fusion Technol. 38 58

    [10]

    Margevicius R W, Salzer L J, Salazar M A, Foreman L R 1999 Fusion Technol. 35 106

    [11]

    Zhang Z W, Li B, Tang Y J, Wanh C Y, Chen S F, Qi X B 2005 J. Chin. Ceramic Soc. 33 1085 (in Chinese) [张占文, 李波, 唐永建, 王朝阳, 陈素芬, 漆小波 2005 硅酸盐学报 33 1085]

    [12]

    Chen K C, Cook R C, Huang H, Letts S A, Nikroo A 2006 Fusion Technol. 49 750

    [13]

    Brusasco R, Saculla M, Cook R 1995 J. Vac. Sci. Technol. A 13 948

    [14]

    Du K, You D, Zhang L, Zhou L, Lin B 1998 High Power Laser and Particle Beam 10 426 (in Chinese) [杜凯, 游丹, 张林, 周兰, 林波 1998 强激光与离子束 10 426]

    [15]

    Zhang L, Tang Y J, Gao D Z, You D, Tu H Y, Luo X 2001 Atomic Energy Sci. Technol. 35 427 (in Chinese) [张林, 唐永建, 高党忠, 游丹, 涂海燕, 罗炫 2001 原子能科学技术 35 427]

    [16]

    Huang Y, Wu W D, Wei S, Luo J S, Zhang J C, Zhang Z W 2002 Atomic Energy Sci. Technol. 36 343 (in Chinese) [黄勇, 吴卫东, 魏胜, 罗江山, 张继成, 张占文 2002 原子能科学技术 36 343]

    [17]

    Zhang Z W, Huang Y, Tang Y J, Li B, Chen S F, Liu Y Y 2008 Atomic Energy Sci. Technol. 42 284 (in Chinese) [张占文, 黄勇, 唐永建, 李波, 陈素芬, 刘一杨 2008 原子能科学技术 42 284]

    [18]

    Takagi M, Cook R, McQuillan B, Gibson J, Paguio S 2004 Fusion Technol. 45 171

    [19]

    Theobald M, Chicanne C, Barnouin J, Peche E, Baclet P 2006 Fusion Technol. 49 757

    [20]

    Haan S W, Salmonson J D, Clarkd D S, Ho D D, Hammel B A, Callahan D A, Cerjan C J, Edwards M J, Hatchett S P, Landen O L, Lindl J D, Macgowan B J, Marinak M M, Munro D H, Robey H F, Spears B K, Suter L J, Town R P, Weber S V, Wilson D C 2010 Fusion Technol. 59 1

    [21]

    Chicanne C, Bray J, Peche E, Legay G, Theobald M, Legaie O, Ollagnier A, Finotb E 2010 Fusion Technol. 59 87

    [22]

    Wu W D, Luo J S, Zhang Z W, Huang Y 1999 Atomic Energy Sci. Technol. 33 (in Chinese) [吴卫东, 罗江山, 张占文, 黄勇 1999 原子能科学技术 33 319]

    [23]

    Yang Z L, He Z B, Song Z M, Lu T C, Zhang B L, Tang Y J 2010 High Power Laser and Particle Beam 22 1044 (in Chinese) [阳志林, 何智兵, 宋之敏, 卢铁城, 张宝玲, 唐永建 2010 强激光与离子束 22 1048]

    [24]

    Zhang Z W, Huang Y, Tang Y J, Li B, Chen S F, He Z B 2009 Atomic Energy Sci. Technol. 43 457 (in Chinese) [张占文, 黄勇, 唐永建, 李波, 陈素芬, 何智兵 2009 原子能科学技术 43 457]

    [25]

    Czechowicz D G, Castillo E R, Nikroo A 2002 Fusion Technol. 41 188

    [26]

    Chen K C, Moreno K A, Lee Y T, Wu J J, Nguyen Q L, Huang H, Sequoia K, Nikroo A 2009 Fusion Technol. 59 8

    [27]

    Theobald M, Dumay B, Chicanne C, Barnouin J, Legaie O, Baclet P 2004 Fusion Technol. 45 176

    [28]

    Nikroo A, Pontelandolfo J M, Castillo E R 2002 Fusion Technol. 41 220

    [29]

    Chen K C, Nguyen A Q, Huang H, Eddinger S A, Nikroo A 2009 Fusion Technol. 55 429

    [30]

    Clark D S, Haan S W, Hammel B A, Salmonson J D, Callahan D A, Town R P J 2010 Phys. Plasmas 17 052703

    [31]

    Mceachen R, Alford C, Cook R, Makowiecki D, Wallace R 1997 Fusion Technol. 31 435

    [32]

    Xu H W, Alford C S, Cooley J C, Dixon L A, Hackenberg R E, Letts A A, Moreno K A, Nikroo A, Wall J R, Youngblood K P 2007 Fusion Technol. 51 547

    [33]

    Salazar K V, Pattillo S G, Trkula M 2000 Fusion Technol. 38 69

    [34]

    Lundgren E H, Forsman A C 2009 Fusion Technol. 55 325

    [35]

    Youngblood K P, Moreno K A, Nikroo A, Huang H, Lee Y T, Letts S A, Alford C S, Buckley S R 2007 Fusion Technol. 51 572

    [36]

    Bhandarkar S, Letts S A, Buckley S, Alford C, Lindsey E, Hughes J, Youngblood K P, Moreno K, Xu H, Huang H, Nikroo A 2007 Fusion Technol. 51 564

    [37]

    Nikroo A, Xu H W, Moreno K A, Youngblood K P, Cooley J, Alford C S, Letts S A, Cook R C 2007 Fusion Technol. 51 553

    [38]

    Sanchez J J, Letts S A 1997 Fusion Technol. 31 491

    [39]

    Alfonso E L, Tsai F Y, Chen S H, Gram R Q, Harding D R 1999 Fusion Technol. 35 131

    [40]

    Huang Y, Zhang Z W, Liu Y Y, Li B, Chen S F, Qi X B 2011 High Power Laser and Particle Beam 23 1527 (in Chinese) [黄勇, 张占文, 刘一杨, 李波, 陈素芬, 漆小波 2011 强激光与离子束 23 1527]

    [41]

    Letts S A, Fearon E, Anthamatten M, Buckley S R, King C, Cook R 2006 Fusion Technol. 49 714

    [42]

    Chen K C, Nikroo A 2006 Fusion Technol. 49 721

    [43]

    Biener J, Mirkarimi P B, Tringe J W, Baker S L, Wang Y, Kucheyev S O, Teslich N E, Wu K J J, Hamza A V, Wild C, Woerner E, Koidl P, Bruehne K, Fecht H J 2006 Fusion Technol. 49 737

    [44]

    Burnham A K, Alford C S, Makowiecki D M, Dittrich T R, Wallace R J, Honea E C, King C M 1997 Fusion Technol. 31 456

    [45]

    Haan S W, Pollaine S M, Lindl J D, Suter L J, Berger R L, Powers L V, Alley W E, Amendt P A, Futterman J A, Levedahl W K, Rosen M D, Rowley D P, Sacks R A, Shestakov A I, Strobel G L, Tabak M, Weber S V, Zimmerman G B, Krauser W J, Wilson D C, Coggeshall S V, Harris D B, Hoffman N M, Wilde B H 1995 Phys. Plasmas 2 2480

    [46]

    Dittrich T R, Haan S W, Marinak M M, Hinkel D E, Pollaine S M, Mceachern R, Cook R C, Roberts C C, Wilson D C, Bradley P A, Varnum W S 1999 Laser and Particle Beams 17 217

    [47]

    Wilson D S, Bradley P A, Hoffman N M, Swenson F J, Smitherman D P, Chrien R E, Margevicius R W, Thoma D J, Foreman L R, Hoffer J K, Goldman S R, Caldwell S E, Dittrich T R, Haan S W, Marinak M M, Pollaine S M, Sanchez J J 1998 Phys. Plasmas 5 1953

  • [1]

    Tabak M, Hammer J M, Glinsky M E 1994 Phys. Plasmas 1 1626

    [2]

    Lindl J D 1995 Phys. Plasmas 2 3933

    [3]

    Haan S W, Callahan D A, Edwards M J 2009 Fusion Sci. Technol. 55 227

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2003 Phys. Plasmas 11 339

    [5]

    Dittrich T R, Haan S W, Pollaine S, Burnharm A K 1997 Fusion Technol. 31 402

    [6]

    Dittrich T R, Haan S W, Marinak M M, Pollaine S M, McEachern R 1998 Phys. Plasmas 5 3708

    [7]

    McQuillan B W, Nikroo A, Steinman D A, Elsner F H, Czechowicz D G, Hoppe M L, Sixtus M, Miller W J 1997 Fusion Technol. 31 381

    [8]

    Fearon E M, Letts S A, Allison L M, Cook R C 1997 Fusion Technol. 31 406

    [9]

    Nikroo A, Pontelandolfo J M 2000 Fusion Technol. 38 58

    [10]

    Margevicius R W, Salzer L J, Salazar M A, Foreman L R 1999 Fusion Technol. 35 106

    [11]

    Zhang Z W, Li B, Tang Y J, Wanh C Y, Chen S F, Qi X B 2005 J. Chin. Ceramic Soc. 33 1085 (in Chinese) [张占文, 李波, 唐永建, 王朝阳, 陈素芬, 漆小波 2005 硅酸盐学报 33 1085]

    [12]

    Chen K C, Cook R C, Huang H, Letts S A, Nikroo A 2006 Fusion Technol. 49 750

    [13]

    Brusasco R, Saculla M, Cook R 1995 J. Vac. Sci. Technol. A 13 948

    [14]

    Du K, You D, Zhang L, Zhou L, Lin B 1998 High Power Laser and Particle Beam 10 426 (in Chinese) [杜凯, 游丹, 张林, 周兰, 林波 1998 强激光与离子束 10 426]

    [15]

    Zhang L, Tang Y J, Gao D Z, You D, Tu H Y, Luo X 2001 Atomic Energy Sci. Technol. 35 427 (in Chinese) [张林, 唐永建, 高党忠, 游丹, 涂海燕, 罗炫 2001 原子能科学技术 35 427]

    [16]

    Huang Y, Wu W D, Wei S, Luo J S, Zhang J C, Zhang Z W 2002 Atomic Energy Sci. Technol. 36 343 (in Chinese) [黄勇, 吴卫东, 魏胜, 罗江山, 张继成, 张占文 2002 原子能科学技术 36 343]

    [17]

    Zhang Z W, Huang Y, Tang Y J, Li B, Chen S F, Liu Y Y 2008 Atomic Energy Sci. Technol. 42 284 (in Chinese) [张占文, 黄勇, 唐永建, 李波, 陈素芬, 刘一杨 2008 原子能科学技术 42 284]

    [18]

    Takagi M, Cook R, McQuillan B, Gibson J, Paguio S 2004 Fusion Technol. 45 171

    [19]

    Theobald M, Chicanne C, Barnouin J, Peche E, Baclet P 2006 Fusion Technol. 49 757

    [20]

    Haan S W, Salmonson J D, Clarkd D S, Ho D D, Hammel B A, Callahan D A, Cerjan C J, Edwards M J, Hatchett S P, Landen O L, Lindl J D, Macgowan B J, Marinak M M, Munro D H, Robey H F, Spears B K, Suter L J, Town R P, Weber S V, Wilson D C 2010 Fusion Technol. 59 1

    [21]

    Chicanne C, Bray J, Peche E, Legay G, Theobald M, Legaie O, Ollagnier A, Finotb E 2010 Fusion Technol. 59 87

    [22]

    Wu W D, Luo J S, Zhang Z W, Huang Y 1999 Atomic Energy Sci. Technol. 33 (in Chinese) [吴卫东, 罗江山, 张占文, 黄勇 1999 原子能科学技术 33 319]

    [23]

    Yang Z L, He Z B, Song Z M, Lu T C, Zhang B L, Tang Y J 2010 High Power Laser and Particle Beam 22 1044 (in Chinese) [阳志林, 何智兵, 宋之敏, 卢铁城, 张宝玲, 唐永建 2010 强激光与离子束 22 1048]

    [24]

    Zhang Z W, Huang Y, Tang Y J, Li B, Chen S F, He Z B 2009 Atomic Energy Sci. Technol. 43 457 (in Chinese) [张占文, 黄勇, 唐永建, 李波, 陈素芬, 何智兵 2009 原子能科学技术 43 457]

    [25]

    Czechowicz D G, Castillo E R, Nikroo A 2002 Fusion Technol. 41 188

    [26]

    Chen K C, Moreno K A, Lee Y T, Wu J J, Nguyen Q L, Huang H, Sequoia K, Nikroo A 2009 Fusion Technol. 59 8

    [27]

    Theobald M, Dumay B, Chicanne C, Barnouin J, Legaie O, Baclet P 2004 Fusion Technol. 45 176

    [28]

    Nikroo A, Pontelandolfo J M, Castillo E R 2002 Fusion Technol. 41 220

    [29]

    Chen K C, Nguyen A Q, Huang H, Eddinger S A, Nikroo A 2009 Fusion Technol. 55 429

    [30]

    Clark D S, Haan S W, Hammel B A, Salmonson J D, Callahan D A, Town R P J 2010 Phys. Plasmas 17 052703

    [31]

    Mceachen R, Alford C, Cook R, Makowiecki D, Wallace R 1997 Fusion Technol. 31 435

    [32]

    Xu H W, Alford C S, Cooley J C, Dixon L A, Hackenberg R E, Letts A A, Moreno K A, Nikroo A, Wall J R, Youngblood K P 2007 Fusion Technol. 51 547

    [33]

    Salazar K V, Pattillo S G, Trkula M 2000 Fusion Technol. 38 69

    [34]

    Lundgren E H, Forsman A C 2009 Fusion Technol. 55 325

    [35]

    Youngblood K P, Moreno K A, Nikroo A, Huang H, Lee Y T, Letts S A, Alford C S, Buckley S R 2007 Fusion Technol. 51 572

    [36]

    Bhandarkar S, Letts S A, Buckley S, Alford C, Lindsey E, Hughes J, Youngblood K P, Moreno K, Xu H, Huang H, Nikroo A 2007 Fusion Technol. 51 564

    [37]

    Nikroo A, Xu H W, Moreno K A, Youngblood K P, Cooley J, Alford C S, Letts S A, Cook R C 2007 Fusion Technol. 51 553

    [38]

    Sanchez J J, Letts S A 1997 Fusion Technol. 31 491

    [39]

    Alfonso E L, Tsai F Y, Chen S H, Gram R Q, Harding D R 1999 Fusion Technol. 35 131

    [40]

    Huang Y, Zhang Z W, Liu Y Y, Li B, Chen S F, Qi X B 2011 High Power Laser and Particle Beam 23 1527 (in Chinese) [黄勇, 张占文, 刘一杨, 李波, 陈素芬, 漆小波 2011 强激光与离子束 23 1527]

    [41]

    Letts S A, Fearon E, Anthamatten M, Buckley S R, King C, Cook R 2006 Fusion Technol. 49 714

    [42]

    Chen K C, Nikroo A 2006 Fusion Technol. 49 721

    [43]

    Biener J, Mirkarimi P B, Tringe J W, Baker S L, Wang Y, Kucheyev S O, Teslich N E, Wu K J J, Hamza A V, Wild C, Woerner E, Koidl P, Bruehne K, Fecht H J 2006 Fusion Technol. 49 737

    [44]

    Burnham A K, Alford C S, Makowiecki D M, Dittrich T R, Wallace R J, Honea E C, King C M 1997 Fusion Technol. 31 456

    [45]

    Haan S W, Pollaine S M, Lindl J D, Suter L J, Berger R L, Powers L V, Alley W E, Amendt P A, Futterman J A, Levedahl W K, Rosen M D, Rowley D P, Sacks R A, Shestakov A I, Strobel G L, Tabak M, Weber S V, Zimmerman G B, Krauser W J, Wilson D C, Coggeshall S V, Harris D B, Hoffman N M, Wilde B H 1995 Phys. Plasmas 2 2480

    [46]

    Dittrich T R, Haan S W, Marinak M M, Hinkel D E, Pollaine S M, Mceachern R, Cook R C, Roberts C C, Wilson D C, Bradley P A, Varnum W S 1999 Laser and Particle Beams 17 217

    [47]

    Wilson D S, Bradley P A, Hoffman N M, Swenson F J, Smitherman D P, Chrien R E, Margevicius R W, Thoma D J, Foreman L R, Hoffer J K, Goldman S R, Caldwell S E, Dittrich T R, Haan S W, Marinak M M, Pollaine S M, Sanchez J J 1998 Phys. Plasmas 5 1953

  • [1] 张棋, 马积瑞, 范金燕, 张杰. 对美国国家点火装置2010年以来实验设计思路的分析. 物理学报, 2022, 71(13): 135202. doi: 10.7498/aps.71.20220199
    [2] 邹雄, 漆小波, 张涛先, 高章帆, 黄卫星. 惯性约束聚变靶丸内杂质气体抽空流洗过程的数值模拟. 物理学报, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [3] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法. 物理学报, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [4] 肖德龙, 戴自换, 孙顺凯, 丁宁, 张扬, 邬吉明, 尹丽, 束小建. Z箍缩动态黑腔驱动靶丸内爆动力学. 物理学报, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [5] 陈鹏玮, 厉彦忠, 李翠, 代飞, 丁岚, 辛毅. 低温冷冻靶温度动态特性的数值模拟研究. 物理学报, 2017, 66(19): 190702. doi: 10.7498/aps.66.190702
    [6] 李宏勋, 张锐, 朱娜, 田小程, 许党朋, 周丹丹, 宗兆玉, 范孟秋, 谢亮华, 郑天然, 李钊历. 基于光束参量优化实现直接驱动靶丸均匀辐照. 物理学报, 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [7] 邓学伟, 周维, 袁强, 代万俊, 胡东霞, 朱启华, 景峰. 甚多束激光直接驱动靶面辐照均匀性研究. 物理学报, 2015, 64(19): 195203. doi: 10.7498/aps.64.195203
    [8] 黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟. 黑腔冷冻靶传热与自然对流的数值模拟研究. 物理学报, 2015, 64(21): 215201. doi: 10.7498/aps.64.215201
    [9] 晏骥, 张兴, 郑建华, 袁永腾, 康洞国, 葛峰骏, 陈黎, 宋仔峰, 袁铮, 蒋炜, 余波, 陈伯伦, 蒲昱东, 黄天晅. 氘氘-塑料靶丸变收缩比内爆物理实验研究. 物理学报, 2015, 64(12): 125203. doi: 10.7498/aps.64.125203
    [10] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [11] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断. 物理学报, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [12] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [13] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [14] 张锐, 王建军, 粟敬钦, 刘兰琴, 邓青华. 基于线性调频脉冲的光谱色散平滑技术实验研究. 物理学报, 2010, 59(2): 1088-1094. doi: 10.7498/aps.59.1088
    [15] 程文雍, 张小民, 粟敬钦, 赵圣之, 董军, 李平, 周丽丹. 利用运动光束抑制高功率激光小尺度自聚焦. 物理学报, 2009, 58(10): 7012-7016. doi: 10.7498/aps.58.7012
    [16] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究. 物理学报, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [17] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [18] 姚 欣, 高福华, 李剑峰, 张怡霄, 温圣林, 郭永康. 光束取样光栅强激光近场调制及诱导损伤研究. 物理学报, 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [19] 姚 欣, 高福华, 温圣林, 张怡霄, 李剑峰, 郭永康. 谐波分离和光束取样集成光学元件强激光近场调制及损伤特性研究. 物理学报, 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [20] 唐永建, 赵永宽, 蒋伟阳, 朱正和, 刘元琼. 等温环境中激光惯性约束聚变冷冻靶丸内部液氢层分布(已撤稿). 物理学报, 1999, 48(12): 2208-2214. doi: 10.7498/aps.48.2208
计量
  • 文章访问数:  5395
  • PDF下载量:  761
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-11
  • 修回日期:  2011-09-03
  • 刊出日期:  2012-07-05

惯性约束聚变点火靶候选靶丸特点及制备研究进展

  • 1. 中国工程物理研究院激光聚变研究中心, 绵阳 621900

摘要: 获得能量增益实现点火是目前激光惯性约束聚变领域研究的主要方向和标志性成果. 在点火靶的设计中有多种可能的候选靶丸,包括碳氢掺杂锗、铍掺杂铜、聚酰亚胺、 碳化硼和金刚石靶丸,其中碳氢和铍靶丸是最主要的候选靶丸.文中主要总结了几种候选靶丸的优缺点及目前研制现状.在国外,碳氢靶丸是目前点火靶的首选靶丸. 与铍靶丸相比,不存在明显的微结构缺陷,制备较容易;靶丸光学透明, 适宜于燃料分层和表征;靶丸在制备上更容易达到点火靶要求. 美国的碳氢点火靶靶丸基本达到了设计要求,这些要求包括几何尺寸、壳层密度、 壳层缺陷、表面光洁度、掺杂水平和杂质含量等.我国的点火靶靶丸研究还处在起步阶段.

English Abstract

参考文献 (47)

目录

    /

    返回文章
    返回