搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光场离化电流机制产生强太赫兹辐射的参数优化研究

张铠云 杜海伟 陈民 盛政明

引用本文:
Citation:

基于光场离化电流机制产生强太赫兹辐射的参数优化研究

张铠云, 杜海伟, 陈民, 盛政明

Studies on the optimization of terahertz emission based on the field ionization current model

Zhang Kai-Yun, Du Hai-Wei, Chen Min, Sheng Zheng-Ming
PDF
导出引用
  • 基于超短激光脉冲与气体作用通过光场离化电流产生太赫兹(THz)辐射的模型, 研究了用双色激光脉冲的方法产生强THz辐射的优化参数条件. 数值计算表明, 导致THz辐射产生的离化电流主要是由一阶电离过程产生的, 高阶离化对该电流产生的贡献很小. 通过调节基频光与倍频光的配比、相位差都能增大离化电流, 从而可以提高THz辐射振幅. 将激光波长拓展到中红外波段, 也有利于提高离化电流. 此外,改变作用气体的种类也能改变离化电流. 在激光和密度参数相等的情况下, 在氦气中可以产生高于氮气中2倍左右的离化电流.
    Based on the theoretical model of field ionization current for terahertz (THz) emission in laser-gas interaction, the parameter optimization for strong THz emission via the two-color laser scheme is explored. It is found from numerical calculation that the ionization current is due mainly to the first-order ionization process and the contribution from high-order ionization is ignorable. In order to produce stronger THz emission, the ionization current can be enhanced by adjusting the amplitude ratio between the fundamental and its second harmonic laser pulses as well as their relative phase difference. The ionization current can also be increased by use of laser pulses at mid-infrared and by changing the gas species. Under the same laser pulse and gas density conditions, the ionization current from the Helium gas is almost twice that from the Neon gas.
    • 基金项目: 国家自然科学基金(批准号: 11075105, 11121504) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075105, 11121504).
    [1]

    Ferguson B, Zhang X C 2002 Nature Mater. 1 26

    [2]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [3]

    Carr G L, Martin M C, McKinney W R, Jordan K, Neil G R, Williams G P 2002 Nature 420 153

    [4]

    Abo-Bakr M, Feikes J, Holldack K, Kuske P, Peatman W B, Schade U, Wüstefeld G 2003 Phys. Rev. Lett. 90 094801

    [5]

    Sung C, Tochitsky S Y, Reiche S, Rosenzweig J B, Pellegrini C, Joshi C 2006 Phys. Rev. ST Accel. Beams 9 120703

    [6]

    Hu M, Zhang Y X, Yan Y, Zhong R B, Liu S G 2009 Chin. Phys. B 18 3877

    [7]

    Liu S G, Yuan X S, Liu D W, Yan Y, Zhang Y X, Li H F, Zhong R B 2007 Phys. Plasmas 14 103114

    [8]

    Leemans W P, Geddes C G R, Faure J, Tóth C, Tilborg J V, Schroeder C B, Esarey E, Fubiani G, Auerbach D, Marcelis B, Carnahan M A, Kaindl R A, Byrd J, Martin M C 2003 Phys. Rev. Lett. 91 074802

    [9]

    Li C, Zhou M L, Ding W J, Du F, Liu F, Li Y T, Wang W M, Sheng Z M, Ma J L, Chen L M, Lu X, Dong Q L, Wang Z H, Lou Z, Shi S C, Wei Z Y, Zhang J 2011 Phys. Rev. E 84 036405

    [10]

    Jin Z, Chen Z L, Zhuo H B, Kon A, Nakatsutsumi M, Wang H B, Zhang B H, Gu Y Q, Wu Y C, Zhu B, Wang L, Yu M Y, Sheng Z M, Kodama R 2011 Phys. Rev. Lett. 107 265003

    [11]

    Wu H C, Sheng Z M, Zhang J 2008 Phys. Rev. E 77 046405

    [12]

    Sprangle P, Penano J R, Hafizi B, Kapetanakos C A 2004 Phys. Rev. E 69 066415

    [13]

    Cook D J, Hochstrasser R M 2000 Opt. Lett. 25 1210

    [14]

    Thomson M D, Kress M, Loeffler T, Roskos H G 2007 Laser Photon. Rev. 1 349

    [15]

    Zhang Y, Chen Y, Marceau C, Liu W, Sun Z D, Xu S, Théberge F, Châteauneuf M, Dubois J, Chin S L 2008 Opt. Express 16 15483

    [16]

    Kress M, Löffler T, Thomson M D, Dörner R, Gimpel H, Zrost K, Ergler T, Moshammer R, Morgner U, Ullrich J, Roskos H G 2006 Nat. Phys. 2 327

    [17]

    Kim K Y, Glownia J H, Taylor A J, Rodriguez G 2007 Opt. Express 15 4577

    [18]

    Wu H C, Meyer-terVehn J, Sheng Z M 2008 New J. Phys. 10 043001

    [19]

    Zhou Z Y, Zhang D W, Zhao Z X, Yuan J M 2009 Phys. Rev. A 79 063413

    [20]

    Chen M, Pukhov A, Peng X Y, Willi O 2008 Phys. Rev. E 78 046406

    [21]

    Penetrante B M, Bardsley J N 1991 Phys. Rev. A 43 3100

    [22]

    Kemp A J, Pfund R E W, Meyer-ter-Vehn J 2004 Phys. Plasmas 11 5648

    [23]

    Du H W, Chen M, Sheng Z M, Zhang J 2011 Laser Part. Beams 29 447

    [24]

    Frolov M V, Manakov N L, Sarantseva T S, Emelin M Y, Ryabikin M Y, Starace A F 2009 Phys. Rev. Lett. 102 243901

    [25]

    Gingras G, Tripathi A, Witzel B 2009 Phys. Rev. Lett. 103 173001

    [26]

    Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009 Phys. Rev. Lett. 103 093001

    [27]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Chen L M, Qian L J, Zhang J 2011 Opt. Lett. 14 2608

    [28]

    Sun H Q, Zhao G Z, Zhang C L, Yang G Z 2008 Acta Phys. Sin. 57 790 (in Chinese) [孙红起, 赵国忠, 张存林, 杨国桢 2008 物理学报 57 790]

    [29]

    Qi C C, Ouyang Z B 2011 Acta Phys. Sin. 60 090704 (in Chinese) [祁春超, 欧阳征标 2011 物理学报 60 090704]

    [30]

    Löffler T, Jacob F, Roskos H G 2000 Appl. Phys. Lett. 77 453

    [31]

    Houard A, Liu Y, Prade B, Tikhonchuk V T, Mysyrowicz A 2008 Phys. Rev. Lett. 100 255006

    [32]

    Sun W F, Zhou Y S, Wang X K, Zhang Y 2008 Opt. Express 16 16573

    [33]

    Chen Y, Wang T, Marceau C, Théberge F, Châteauneuf M, Dubois J, Kosareva O, Chin S L 2009 Appl. Phys. Lett. 95 101101

    [34]

    Jia W L, Shi W, Ji W L, Ma D M 2007 Acta Phys. Sin. 56 3845 (in Chinese) [贾婉丽, 施卫, 纪卫莉, 马德明 2007 物理学报 56 3845]

    [35]

    Wang W M, Sheng Z M, Dong X G, Du H W, Li Y T, Zhang J 2010 J. Appl. Phys. 107 023113

  • [1]

    Ferguson B, Zhang X C 2002 Nature Mater. 1 26

    [2]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [3]

    Carr G L, Martin M C, McKinney W R, Jordan K, Neil G R, Williams G P 2002 Nature 420 153

    [4]

    Abo-Bakr M, Feikes J, Holldack K, Kuske P, Peatman W B, Schade U, Wüstefeld G 2003 Phys. Rev. Lett. 90 094801

    [5]

    Sung C, Tochitsky S Y, Reiche S, Rosenzweig J B, Pellegrini C, Joshi C 2006 Phys. Rev. ST Accel. Beams 9 120703

    [6]

    Hu M, Zhang Y X, Yan Y, Zhong R B, Liu S G 2009 Chin. Phys. B 18 3877

    [7]

    Liu S G, Yuan X S, Liu D W, Yan Y, Zhang Y X, Li H F, Zhong R B 2007 Phys. Plasmas 14 103114

    [8]

    Leemans W P, Geddes C G R, Faure J, Tóth C, Tilborg J V, Schroeder C B, Esarey E, Fubiani G, Auerbach D, Marcelis B, Carnahan M A, Kaindl R A, Byrd J, Martin M C 2003 Phys. Rev. Lett. 91 074802

    [9]

    Li C, Zhou M L, Ding W J, Du F, Liu F, Li Y T, Wang W M, Sheng Z M, Ma J L, Chen L M, Lu X, Dong Q L, Wang Z H, Lou Z, Shi S C, Wei Z Y, Zhang J 2011 Phys. Rev. E 84 036405

    [10]

    Jin Z, Chen Z L, Zhuo H B, Kon A, Nakatsutsumi M, Wang H B, Zhang B H, Gu Y Q, Wu Y C, Zhu B, Wang L, Yu M Y, Sheng Z M, Kodama R 2011 Phys. Rev. Lett. 107 265003

    [11]

    Wu H C, Sheng Z M, Zhang J 2008 Phys. Rev. E 77 046405

    [12]

    Sprangle P, Penano J R, Hafizi B, Kapetanakos C A 2004 Phys. Rev. E 69 066415

    [13]

    Cook D J, Hochstrasser R M 2000 Opt. Lett. 25 1210

    [14]

    Thomson M D, Kress M, Loeffler T, Roskos H G 2007 Laser Photon. Rev. 1 349

    [15]

    Zhang Y, Chen Y, Marceau C, Liu W, Sun Z D, Xu S, Théberge F, Châteauneuf M, Dubois J, Chin S L 2008 Opt. Express 16 15483

    [16]

    Kress M, Löffler T, Thomson M D, Dörner R, Gimpel H, Zrost K, Ergler T, Moshammer R, Morgner U, Ullrich J, Roskos H G 2006 Nat. Phys. 2 327

    [17]

    Kim K Y, Glownia J H, Taylor A J, Rodriguez G 2007 Opt. Express 15 4577

    [18]

    Wu H C, Meyer-terVehn J, Sheng Z M 2008 New J. Phys. 10 043001

    [19]

    Zhou Z Y, Zhang D W, Zhao Z X, Yuan J M 2009 Phys. Rev. A 79 063413

    [20]

    Chen M, Pukhov A, Peng X Y, Willi O 2008 Phys. Rev. E 78 046406

    [21]

    Penetrante B M, Bardsley J N 1991 Phys. Rev. A 43 3100

    [22]

    Kemp A J, Pfund R E W, Meyer-ter-Vehn J 2004 Phys. Plasmas 11 5648

    [23]

    Du H W, Chen M, Sheng Z M, Zhang J 2011 Laser Part. Beams 29 447

    [24]

    Frolov M V, Manakov N L, Sarantseva T S, Emelin M Y, Ryabikin M Y, Starace A F 2009 Phys. Rev. Lett. 102 243901

    [25]

    Gingras G, Tripathi A, Witzel B 2009 Phys. Rev. Lett. 103 173001

    [26]

    Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009 Phys. Rev. Lett. 103 093001

    [27]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Chen L M, Qian L J, Zhang J 2011 Opt. Lett. 14 2608

    [28]

    Sun H Q, Zhao G Z, Zhang C L, Yang G Z 2008 Acta Phys. Sin. 57 790 (in Chinese) [孙红起, 赵国忠, 张存林, 杨国桢 2008 物理学报 57 790]

    [29]

    Qi C C, Ouyang Z B 2011 Acta Phys. Sin. 60 090704 (in Chinese) [祁春超, 欧阳征标 2011 物理学报 60 090704]

    [30]

    Löffler T, Jacob F, Roskos H G 2000 Appl. Phys. Lett. 77 453

    [31]

    Houard A, Liu Y, Prade B, Tikhonchuk V T, Mysyrowicz A 2008 Phys. Rev. Lett. 100 255006

    [32]

    Sun W F, Zhou Y S, Wang X K, Zhang Y 2008 Opt. Express 16 16573

    [33]

    Chen Y, Wang T, Marceau C, Théberge F, Châteauneuf M, Dubois J, Kosareva O, Chin S L 2009 Appl. Phys. Lett. 95 101101

    [34]

    Jia W L, Shi W, Ji W L, Ma D M 2007 Acta Phys. Sin. 56 3845 (in Chinese) [贾婉丽, 施卫, 纪卫莉, 马德明 2007 物理学报 56 3845]

    [35]

    Wang W M, Sheng Z M, Dong X G, Du H W, Li Y T, Zhang J 2010 J. Appl. Phys. 107 023113

  • [1] 魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣. 飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射. 物理学报, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [2] 王天泽, 雷弘毅, 孙方正, 王丹, 廖国前, 李玉同. 飞秒超强激光驱动太赫兹辐射特性的实验研究. 物理学报, 2021, 70(8): 085205. doi: 10.7498/aps.70.20210518
    [3] 张帆, 许涌, 柳洋, 程厚义, 张晓强, 杜寅昌, 吴晓君, 赵巍胜. 磁控溅射法生长Bi2Te3/CoFeB双层异质结太赫兹发射. 物理学报, 2020, 69(20): 200705. doi: 10.7498/aps.69.20200634
    [4] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究. 物理学报, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [5] 李晓璐, 白亚, 刘鹏. 激光等离子体光丝中太赫兹频谱的调控. 物理学报, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [6] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究. 物理学报, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [7] 李娜, 白亚, 刘鹏. 激光等离子体太赫兹辐射源的频率控制. 物理学报, 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [8] 李书磊, 刘磊, 高太长, 黄威, 胡帅. 太赫兹波被动遥感卷云微物理参数的敏感性试验分析. 物理学报, 2016, 65(13): 134102. doi: 10.7498/aps.65.134102
    [9] 朱卫卫, 张秋菊, 张延惠, 焦扬. 电子在激光驻波场中运动产生的太赫兹及X射线辐射研究. 物理学报, 2015, 64(12): 124104. doi: 10.7498/aps.64.124104
    [10] 陈高, 杨玉军, 郭福明. 双色激光脉冲辐照下38 as孤立短脉冲的产生. 物理学报, 2013, 62(7): 073203. doi: 10.7498/aps.62.073203
    [11] 张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云. 具有分离门的电抽运多层石墨烯负动态电导率的理论研究. 物理学报, 2012, 61(4): 047803. doi: 10.7498/aps.61.047803
    [12] 杜海伟, 陈民, 张凯云, 盛政明, 张杰. 少周期激光脉冲与气体作用产生的离化电流和THz波辐射. 物理学报, 2012, 61(17): 174205. doi: 10.7498/aps.61.174205
    [13] 祁春超, 欧阳征标. 基于600—2000 nm抽运源的太赫兹相干光源的最新进展. 物理学报, 2011, 60(9): 090704. doi: 10.7498/aps.60.090704
    [14] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏. 级联差频产生太赫兹辐射的理论研究. 物理学报, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [15] 祁春超, 左都罗, 孟凡奇, 卢彦兆, 纠智先, 程祖海. 基于光放大的长脉冲抽运太赫兹激光. 物理学报, 2009, 58(7): 4641-4646. doi: 10.7498/aps.58.4641
    [16] 黄楠, 李雪峰, 刘红军, 夏彩鹏. 增益饱和对光学差频产生太赫兹辐射的功率和稳定性的影响. 物理学报, 2009, 58(12): 8326-8331. doi: 10.7498/aps.58.8326
    [17] 张贵银, 靳一东. NO2分子的光学-光学双色双共振多光子离化谱. 物理学报, 2008, 57(1): 132-136. doi: 10.7498/aps.57.132
    [18] 孙红起, 赵国忠, 张存林, 杨国桢. 不同中心波长飞秒脉冲激发InAs表面辐射太赫兹波的机理研究. 物理学报, 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
    [19] 邓玉强, 郎利影, 邢岐荣, 曹士英, 于 靖, 徐 涛, 李 健, 熊利民, 王清月, 张志刚. Gabor小波分析太赫兹波时间-频率特性的研究. 物理学报, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
    [20] 姚关华, 余玮, 徐至展, 陈荣清. 平滑激光脉冲诱导的阈上离化. 物理学报, 1990, 39(1): 35-39. doi: 10.7498/aps.39.35
计量
  • 文章访问数:  4040
  • PDF下载量:  477
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-14
  • 修回日期:  2012-02-13
  • 刊出日期:  2012-08-05

基于光场离化电流机制产生强太赫兹辐射的参数优化研究

  • 1. 上海交通大学物理系, 激光等离子体教育部重点实验室, 上海 200240;
  • 2. 劳伦斯伯克利国家实验室, 美国 加州 94720
    基金项目: 国家自然科学基金(批准号: 11075105, 11121504) 资助的课题.

摘要: 基于超短激光脉冲与气体作用通过光场离化电流产生太赫兹(THz)辐射的模型, 研究了用双色激光脉冲的方法产生强THz辐射的优化参数条件. 数值计算表明, 导致THz辐射产生的离化电流主要是由一阶电离过程产生的, 高阶离化对该电流产生的贡献很小. 通过调节基频光与倍频光的配比、相位差都能增大离化电流, 从而可以提高THz辐射振幅. 将激光波长拓展到中红外波段, 也有利于提高离化电流. 此外,改变作用气体的种类也能改变离化电流. 在激光和密度参数相等的情况下, 在氦气中可以产生高于氮气中2倍左右的离化电流.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回