搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子注入能量对垂直腔面发射激光器的阈值和功率的影响

毛明明 徐晨 魏思民 解意洋 刘久澄 许坤

引用本文:
Citation:

质子注入能量对垂直腔面发射激光器的阈值和功率的影响

毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤

The effects of proton implant energy on threshold and output power of vertical cavity surface emitting laser

Mao Ming-Ming, Xu Chen, Wei Si-Min, Xie Yi-Yang, Liu Jiu-Cheng, Xu Kun
PDF
导出引用
  • 文章研究了如何兼顾质子注入型垂直腔面发射激光器的功率和阈值性能. 从模拟和实验两方面分析了质子注入能量与器件功率和阈值特性的关系. 发现注入能量过高时, 损伤有源区, 降低了功率性能. 而能量过低则会减弱对注入电流的限制, 增加阈值. 计算和实验结果表明, 对于文中的器件结构, 315 keV的注入能量是合适的. 在10 μm的注入孔径下获得器件的阈值为4.3 mA, 功率为1.7 mW.
    A method of balancing the output power and threshold current property of vertical cavity surface emitting laser is studied. The relationship between proton implantation energy and device performance is analyzed by simulation and experiment. It is found that a higher injection energy can destroy the active region, thus reducing the output power property. The threshold current will be increased since a lower injection energy may weaken the restriction on the injection current. The results indicate that 315 keV injection energy is the right choice for our device structure. The output power and threshold current obtained under 10 μm aperture are 1.7 mW and 4.3 mW, respectively.
    • 基金项目: 国家高技术研究发展计划(批准号: 2008AA03Z402)、 国家自然科学基金(批准号: 61076044)和北京市自然科学基金(批准号: 4092007, 4102003, 4112006)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA03Z402), the National Natural Science Foundation of China (Grant No. 61076044 ), and the Natural Science Foundation of Beijing, China (Grant Nos. 4092007, 4102003, 4112006).
    [1]

    Hugues-Salas E, Jin X Q, Giddings R P, Hong, Y, Mansoor S, Villafranca A, Tang J M 2012 IEEE Photonics J. 4 143

    [2]

    Tian Z B, Chen C, Plant D V, Hugues-Salas E, Jin X Q, Giddings R P, Hong Y, Mansoor S, Villafranca A, Tang J M 2012 IEEE Photonics Technol. Lett. 4 143

    [3]

    Chow W W, Choquette K D, Crawford M H, Lear K L, Hadley G R 1997 IEEE J. Quantum Electron. 33 1810

    [4]

    Zan-Kuin S, Jingchang Y, Shooti-Jinn C 2002 IEEE Photonics Technol. Lett. 14 1388

    [5]

    Ressel P, Strusny H, Gramlich S, Zeimer U, Sebastian J, Vogel K 1993 Electron. Lett. 29 918

    [6]

    Leisher P O, Sulkin J D, Choquette K D 2007 IEEE J. Sel. Top. Quantum Electron. 13 1290

    [7]

    Mawst L J 2003 IEEE Circuits Dev. Mag. 19 34

    [8]

    Bao L, Kim N H, Mawst L J, Elkin N N, Troshchieva V N, Vysotsky D V, Napartovich A P 2007 IEEE Photonics Technol. Lett. 19 239

    [9]

    Bao L, Kim N H, Mawst L J, Elkin N N, Troshchieva V N, Vysotsky D V, Napartovich A P 2005 IEEE J. Sel. Top. Quantum Electron. 11 968

    [10]

    Zhou D L, Mawst L J 2002 IEEE J. Quantum Electron. 38 1599

    [11]

    Pearton S J 1993 Int. J. Mod. Phys. B 7 4687

    [12]

    Zavada J M, Jenkinson H A, Wilson R G, Sadana D K 1985 J. Appl. Phys. 57 2299

    [13]

    Morgan D V, Eisen F H, Ezis A 1981 Solid-State Electron. 128 109

    [14]

    Jiang W, Gaw C, Kiely P, Lawrence B, Lebby M, Claisse P R 1997 Electron. Lett. 33 137

    [15]

    Cheng Z Q, Sun X W, Xia G Q, Li H Q, Sheng H M, Qian R 2000 Acta Phys. Sin. 49 375 (in Chinese) [程知群, 孙晓伟, 夏冠群, 李洪芹, 盛怀茂, 钱蓉 2000 物理学报 49 375]

    [16]

    Ramaswamy A, van der Ziel J P, Biard J R, Johnson R, Tatum J A 1998 IEEE J. Quantum Electron. 34 2233

    [17]

    Mao M M, Xu C, Wei S M, Xie Y Y, Cao T 2012 in Photonics and Optolectronics Meetings (POEM) 2011: Optoelectronic Devices and Integration Wuhan November 2-5, 2011, p8333

    [18]

    Wang B Q, Xu C, Liu Y M, Xie Y Y, Liu F, Zhao Z B, Zhou K, Shen G D 2010 Acta Phys. Sin. 59 8542 (in Chinese) [王宝强, 徐晨, 刘英明, 解意洋, 刘发, 赵振波, 周康, 沈光地 2010 物理学报 59 8542]

    [19]

    Ziegler J F, Biersack J P, Littmark U 1985 Stopping and Range of Ions in Solids (New York, Pergamon Press) pp17-25

  • [1]

    Hugues-Salas E, Jin X Q, Giddings R P, Hong, Y, Mansoor S, Villafranca A, Tang J M 2012 IEEE Photonics J. 4 143

    [2]

    Tian Z B, Chen C, Plant D V, Hugues-Salas E, Jin X Q, Giddings R P, Hong Y, Mansoor S, Villafranca A, Tang J M 2012 IEEE Photonics Technol. Lett. 4 143

    [3]

    Chow W W, Choquette K D, Crawford M H, Lear K L, Hadley G R 1997 IEEE J. Quantum Electron. 33 1810

    [4]

    Zan-Kuin S, Jingchang Y, Shooti-Jinn C 2002 IEEE Photonics Technol. Lett. 14 1388

    [5]

    Ressel P, Strusny H, Gramlich S, Zeimer U, Sebastian J, Vogel K 1993 Electron. Lett. 29 918

    [6]

    Leisher P O, Sulkin J D, Choquette K D 2007 IEEE J. Sel. Top. Quantum Electron. 13 1290

    [7]

    Mawst L J 2003 IEEE Circuits Dev. Mag. 19 34

    [8]

    Bao L, Kim N H, Mawst L J, Elkin N N, Troshchieva V N, Vysotsky D V, Napartovich A P 2007 IEEE Photonics Technol. Lett. 19 239

    [9]

    Bao L, Kim N H, Mawst L J, Elkin N N, Troshchieva V N, Vysotsky D V, Napartovich A P 2005 IEEE J. Sel. Top. Quantum Electron. 11 968

    [10]

    Zhou D L, Mawst L J 2002 IEEE J. Quantum Electron. 38 1599

    [11]

    Pearton S J 1993 Int. J. Mod. Phys. B 7 4687

    [12]

    Zavada J M, Jenkinson H A, Wilson R G, Sadana D K 1985 J. Appl. Phys. 57 2299

    [13]

    Morgan D V, Eisen F H, Ezis A 1981 Solid-State Electron. 128 109

    [14]

    Jiang W, Gaw C, Kiely P, Lawrence B, Lebby M, Claisse P R 1997 Electron. Lett. 33 137

    [15]

    Cheng Z Q, Sun X W, Xia G Q, Li H Q, Sheng H M, Qian R 2000 Acta Phys. Sin. 49 375 (in Chinese) [程知群, 孙晓伟, 夏冠群, 李洪芹, 盛怀茂, 钱蓉 2000 物理学报 49 375]

    [16]

    Ramaswamy A, van der Ziel J P, Biard J R, Johnson R, Tatum J A 1998 IEEE J. Quantum Electron. 34 2233

    [17]

    Mao M M, Xu C, Wei S M, Xie Y Y, Cao T 2012 in Photonics and Optolectronics Meetings (POEM) 2011: Optoelectronic Devices and Integration Wuhan November 2-5, 2011, p8333

    [18]

    Wang B Q, Xu C, Liu Y M, Xie Y Y, Liu F, Zhao Z B, Zhou K, Shen G D 2010 Acta Phys. Sin. 59 8542 (in Chinese) [王宝强, 徐晨, 刘英明, 解意洋, 刘发, 赵振波, 周康, 沈光地 2010 物理学报 59 8542]

    [19]

    Ziegler J F, Biersack J P, Littmark U 1985 Stopping and Range of Ions in Solids (New York, Pergamon Press) pp17-25

  • [1] 周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇. 高速850 nm垂直腔面发射激光器的优化设计与外延生长. 物理学报, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [2] 张浩, 郭星星, 项水英. 基于单向注入垂直腔面发射激光器系统的密钥分发. 物理学报, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
    [3] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [4] 关宝璐, 刘欣, 江孝伟, 刘储, 徐晨. 多横模垂直腔面发射激光器及其波长特性. 物理学报, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [5] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究. 物理学报, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [6] 苏兆锋, 杨海亮, 张鹏飞, 来定国, 郭建明, 任书庆, 王强. 脉冲电场下两种电极材料表面电子发射阈值特性的实验研究. 物理学报, 2014, 63(10): 106801. doi: 10.7498/aps.63.106801
    [7] 徐艳, 陈飞, 谢冀江, 李殿军, 杨贵龙, 高飞, 郭劲. 半导体抽运铯蒸气激光器阈值特性分析. 物理学报, 2014, 63(17): 174201. doi: 10.7498/aps.63.174201
    [8] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [9] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [10] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [11] 赵红东, 张卫华, 李文超, 刘会丽, 孙梅. 电流孔的尺寸对双氧化限制垂直腔面发射激光器阈值的影响. 物理学报, 2010, 59(6): 3948-3952. doi: 10.7498/aps.59.3948
    [12] 付方正, 李明. 蒙特卡罗法计算无序激光器的阈值. 物理学报, 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [13] 劳燕锋, 曹春芳, 吴惠桢, 曹萌, 龚谦. 亚毫安阈值的1.3μm垂直腔面发射激光器. 物理学报, 2009, 58(3): 1954-1958. doi: 10.7498/aps.58.1954
    [14] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [15] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [16] 王 宏, 欧阳征标, 韩艳玲, 孟庆生, 罗贤达, 刘劲松. 随机性对部分随机介质激光器阈值的影响. 物理学报, 2007, 56(5): 2616-2622. doi: 10.7498/aps.56.2616
    [17] 薛迎红, 王清月, 柴 路, 刘庆文, 赵广军, 苏良碧, 徐晓东, 徐 军. LD抽运Yb:GSO实现1090 nm低阈值激光运转. 物理学报, 2006, 55(1): 456-459. doi: 10.7498/aps.55.456
    [18] 张新陆, 王月珠, 鞠有伦. 能量传递上转换对Tm,Ho:YLF激光器阈值的影响. 物理学报, 2005, 54(1): 117-122. doi: 10.7498/aps.54.117
    [19] 赵红东, 宋殿友, 张智峰, 孙 静, 孙 梅, 武 一, 温幸饶. n型DBR中电势对垂直腔面发射激光器阈值的影响. 物理学报, 2004, 53(11): 3744-3747. doi: 10.7498/aps.53.3744
    [20] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
计量
  • 文章访问数:  3549
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-16
  • 修回日期:  2012-05-14
  • 刊出日期:  2012-11-05

质子注入能量对垂直腔面发射激光器的阈值和功率的影响

  • 1. 北京工业大学光电子技术实验室, 北京 100124
    基金项目: 国家高技术研究发展计划(批准号: 2008AA03Z402)、 国家自然科学基金(批准号: 61076044)和北京市自然科学基金(批准号: 4092007, 4102003, 4112006)资助的课题.

摘要: 文章研究了如何兼顾质子注入型垂直腔面发射激光器的功率和阈值性能. 从模拟和实验两方面分析了质子注入能量与器件功率和阈值特性的关系. 发现注入能量过高时, 损伤有源区, 降低了功率性能. 而能量过低则会减弱对注入电流的限制, 增加阈值. 计算和实验结果表明, 对于文中的器件结构, 315 keV的注入能量是合适的. 在10 μm的注入孔径下获得器件的阈值为4.3 mA, 功率为1.7 mW.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回