搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双频容性耦合等离子体密度径向均匀性研究

蒋相站 刘永新 毕振华 陆文琪 王友年

引用本文:
Citation:

双频容性耦合等离子体密度径向均匀性研究

蒋相站, 刘永新, 毕振华, 陆文琪, 王友年

Radial density uniformity of dual frequency capacitively coupled plasma

Jiang Xiang-Zhan, Liu Yong-Xin, Bi Zhen-Hua, Lu Wen-Qi, Wang You-Nian
PDF
导出引用
  • 利用自主研制的全悬浮双探针, 对影响双频容性耦合等离子体径向均匀性的因素进行了研究. 发现低频功率、放电气压和放电间距对径向均匀性有明显影响. 合适的低频功率、放电气压及较大的极板间距可以得到更均匀的等离子体. 采用与实验相同的放电参数, 利用改进的二维流体模型进行理论模拟, 得到了不同极板间距下径向离子密度分布, 并和实验测量结果进行了比较, 两者的变化趋势基本符合.
    The influences on dual frequency capacitively coupled plasma radial uniformity are studied with a newly developed complete floating double probe. It is found that low frequency power, discharge pressure and gap have significant effects on radial uniformity. The results show that a suitable low frequency power, discharge pressure and larger discharge gap can achieve more uniform plasma. Finally, the improved two-dimensional fluid model simulations are performed with the same discharge parameters in experiment. The radial ion density distributions are obtained for different discharge gaps. The results are almost consistent with each other.
    • 基金项目: 国家自然科学基金重点项目(批准号: 10635010)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 10635010).
    [1]

    Lee J K, Babaeva N Y, Kim H C, Manuilenko O V, Shon JW2004 IEEE Trans. Plasma Sci. 32 47

    [2]

    Boyle P C, Ellingboe A R, Turner M M 2004 Plasma Sourc. Sci. Technol. 13 493

    [3]

    Kitajima T, Takeo Y, Petrovic Z L, Makabe T 2000 Appl. Phys. Lett. 77 489

    [4]

    Kim H C, Lee J K, Shon J W 2003 Phys. Plasmas 10 4545

    [5]

    Chung T H 2005 Phys. Plasmas 12 104503

    [6]

    Salabas A, Brinkmann R P 2005 Plasma Sourc. Sci. Technol. 14 S53

    [7]

    Boyle P C, Ellingboe A R, Turner M M 2004 J. Phys. D: Appl. Phys. 37 697

    [8]

    Kim H C, Lee J K 2005 Phys. Plasmas 12 053501

    [9]

    Kim H C, Lee J K 2004 Phys. Rev. Lett. 93 085003

    [10]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506

    [11]

    Lee J K, Manuilenko O V, Babaeva N Yu, Kim H C, Shon J W 2005 Plasma Sourc. Sci. Technol. 14 89

    [12]

    Lowe H D, Goto H H, Ohmi T 1991 J. Vac. Sci. Technol. A 9 3090

    [13]

    Goto H H, Lowe H D, Ohmi T 1992 J. Vac. Sci. Technol. A 10 3048

    [14]

    Denda T, Miyoshi Y, Komukai Y, Goto T, Petrovic Z L J, Makabe T 2004 J. Appl. Phys. 95 870

    [15]

    Karkari S K, Ellingboe A R 2006 Appl. Phys. Lett. 88 101501

    [16]

    Ohmori T, Goto T K, Kitajima T, Makabe T 2003 Appl. Phys. Lett. 83 4637

    [17]

    Li X S, Bi Z H, Chang D L, Li Z C 2008 Appl. Phys. Lett. 93 031504

    [18]

    Li Z C, Chang D L, Li X S, Bi Z H, Lu W Q 2010 Phys. Plasmas 17 033501

    [19]

    Lisovskiy V A, Yegorenkov V D 2006 Vacuum 80 458

    [20]

    Sudit I D, Chen F F 1994 Plasma Sourc. Sci. Technol. 3 162

    [21]

    Braithwaite N S J, Benjamin N M P, Allen J E 1987 J. Phys. E: Sci. Instrum. 20 1046

    [22]

    Paranjpe A P, McVittie J P, Self S A 1990 J. Appl. Phys. 67 6718

    [23]

    Hebner G A, Paterson A M 2010 Plasma Sourc. Sci. Technol. 19 015020

    [24]

    Kitajima T, Takeo Y, Makabe T 1999 J. Vac. Sci. Technol. A 17 2510

    [25]

    Schulze J, Gans T, O’Connell D, Czarnetzki U, Ellingboe A R, Turner M M 2007 J. Phys. D 40 7008

    [26]

    Ishimaru M, Ohba T, Ohmori T, Yagisawa T, Kitajima T, Makabe T. 2008 Appl. Phys. Lett. 92 071501

    [27]

    Chen Z Y, Donnelly V M, Economou D J, Chen L, Funk M, Sundararajan R 2009 J. Vac. Sci. Technol. A 27 1159

    [28]

    Karkari S K, Ellingboe A R, Gaman C 2008 Appl. Phys. Lett. 93 071501

    [29]

    Booth J P, Curley G, Mari′c D, Chabert P 2010 Plasma Sourc. Sci. Technol. 19 01500

    [30]

    Lu W Q (Chinese Patent) 200610134481.0. [2007-06-27] [陆文琪 中国专利] 200610134481.0. [2007-06-27]

    [31]

    Huddlestone R H, Leonard S L 1965 Plasma Diagnostic Techniques (New York: Academic) pp 150, 183

    [32]

    Zhao G L, Xu Y, Shang J P, Zhu A M, Lu W Q, Wang Y N 2009 Modern Phys. Lett. B 23 3409

    [33]

    Overzet L J, Hopkins M B 1993 Appl. Phys. Lett. 63 2484

    [34]

    Lieberman M A, Lichtenberg A J 2007 (Translated by Pa Y K) Principles of Plasma Discharges and Mayeriols Processing (2nd Ed.) (in Chinese) [迈克尔 · A. 力伯曼, 阿伦 · J. 里登伯格著, 蒲以康 等译 2007 等离子体 放电原理与材料处理 (北京: 科学出版社) p 291]

    [35]

    Gogolides E, Sawin H H 1992 J. Appl. Phys. 72 3971

    [36]

    Bukowski J D, Graves D B, Vitello P 1996 J. Appl. Phys. 80 2614

    [37]

    Stewart R A, Vitello P, Graves D B, Jaeger E F, Berry L A 1995 Plasma Sourc. Sci. Technol. 4 36

    [38]

    Nitschke T E, Graves D B 1994 J. Appl. Phys. 76 5646

    [39]

    Boeuf J P, Pitchford L C 1995 Phys. Rev. E 51 1376

    [40]

    Godyak V A, Piejak R B, Alexandrovich BM1992 Plasma Sourc. Sci. Technol. 1 36

  • [1]

    Lee J K, Babaeva N Y, Kim H C, Manuilenko O V, Shon JW2004 IEEE Trans. Plasma Sci. 32 47

    [2]

    Boyle P C, Ellingboe A R, Turner M M 2004 Plasma Sourc. Sci. Technol. 13 493

    [3]

    Kitajima T, Takeo Y, Petrovic Z L, Makabe T 2000 Appl. Phys. Lett. 77 489

    [4]

    Kim H C, Lee J K, Shon J W 2003 Phys. Plasmas 10 4545

    [5]

    Chung T H 2005 Phys. Plasmas 12 104503

    [6]

    Salabas A, Brinkmann R P 2005 Plasma Sourc. Sci. Technol. 14 S53

    [7]

    Boyle P C, Ellingboe A R, Turner M M 2004 J. Phys. D: Appl. Phys. 37 697

    [8]

    Kim H C, Lee J K 2005 Phys. Plasmas 12 053501

    [9]

    Kim H C, Lee J K 2004 Phys. Rev. Lett. 93 085003

    [10]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506

    [11]

    Lee J K, Manuilenko O V, Babaeva N Yu, Kim H C, Shon J W 2005 Plasma Sourc. Sci. Technol. 14 89

    [12]

    Lowe H D, Goto H H, Ohmi T 1991 J. Vac. Sci. Technol. A 9 3090

    [13]

    Goto H H, Lowe H D, Ohmi T 1992 J. Vac. Sci. Technol. A 10 3048

    [14]

    Denda T, Miyoshi Y, Komukai Y, Goto T, Petrovic Z L J, Makabe T 2004 J. Appl. Phys. 95 870

    [15]

    Karkari S K, Ellingboe A R 2006 Appl. Phys. Lett. 88 101501

    [16]

    Ohmori T, Goto T K, Kitajima T, Makabe T 2003 Appl. Phys. Lett. 83 4637

    [17]

    Li X S, Bi Z H, Chang D L, Li Z C 2008 Appl. Phys. Lett. 93 031504

    [18]

    Li Z C, Chang D L, Li X S, Bi Z H, Lu W Q 2010 Phys. Plasmas 17 033501

    [19]

    Lisovskiy V A, Yegorenkov V D 2006 Vacuum 80 458

    [20]

    Sudit I D, Chen F F 1994 Plasma Sourc. Sci. Technol. 3 162

    [21]

    Braithwaite N S J, Benjamin N M P, Allen J E 1987 J. Phys. E: Sci. Instrum. 20 1046

    [22]

    Paranjpe A P, McVittie J P, Self S A 1990 J. Appl. Phys. 67 6718

    [23]

    Hebner G A, Paterson A M 2010 Plasma Sourc. Sci. Technol. 19 015020

    [24]

    Kitajima T, Takeo Y, Makabe T 1999 J. Vac. Sci. Technol. A 17 2510

    [25]

    Schulze J, Gans T, O’Connell D, Czarnetzki U, Ellingboe A R, Turner M M 2007 J. Phys. D 40 7008

    [26]

    Ishimaru M, Ohba T, Ohmori T, Yagisawa T, Kitajima T, Makabe T. 2008 Appl. Phys. Lett. 92 071501

    [27]

    Chen Z Y, Donnelly V M, Economou D J, Chen L, Funk M, Sundararajan R 2009 J. Vac. Sci. Technol. A 27 1159

    [28]

    Karkari S K, Ellingboe A R, Gaman C 2008 Appl. Phys. Lett. 93 071501

    [29]

    Booth J P, Curley G, Mari′c D, Chabert P 2010 Plasma Sourc. Sci. Technol. 19 01500

    [30]

    Lu W Q (Chinese Patent) 200610134481.0. [2007-06-27] [陆文琪 中国专利] 200610134481.0. [2007-06-27]

    [31]

    Huddlestone R H, Leonard S L 1965 Plasma Diagnostic Techniques (New York: Academic) pp 150, 183

    [32]

    Zhao G L, Xu Y, Shang J P, Zhu A M, Lu W Q, Wang Y N 2009 Modern Phys. Lett. B 23 3409

    [33]

    Overzet L J, Hopkins M B 1993 Appl. Phys. Lett. 63 2484

    [34]

    Lieberman M A, Lichtenberg A J 2007 (Translated by Pa Y K) Principles of Plasma Discharges and Mayeriols Processing (2nd Ed.) (in Chinese) [迈克尔 · A. 力伯曼, 阿伦 · J. 里登伯格著, 蒲以康 等译 2007 等离子体 放电原理与材料处理 (北京: 科学出版社) p 291]

    [35]

    Gogolides E, Sawin H H 1992 J. Appl. Phys. 72 3971

    [36]

    Bukowski J D, Graves D B, Vitello P 1996 J. Appl. Phys. 80 2614

    [37]

    Stewart R A, Vitello P, Graves D B, Jaeger E F, Berry L A 1995 Plasma Sourc. Sci. Technol. 4 36

    [38]

    Nitschke T E, Graves D B 1994 J. Appl. Phys. 76 5646

    [39]

    Boeuf J P, Pitchford L C 1995 Phys. Rev. E 51 1376

    [40]

    Godyak V A, Piejak R B, Alexandrovich BM1992 Plasma Sourc. Sci. Technol. 1 36

  • [1] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟. 物理学报, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [2] 杨孟奇, 吴福源, 陈致博, 张翼翔, 陈一, 张晋川, 陈致真, 方志凡, Rafael Ramis, 张杰. 高密度等离子体喷流高速对撞的二维辐射流体模拟研究. 物理学报, 2022, 71(22): 225202. doi: 10.7498/aps.71.20220948
    [3] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究. 物理学报, 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [4] 王丽, 温德奇, 田崇彪, 宋远红, 王友年. 容性耦合等离子体中电子加热过程及放电参数控制. 物理学报, 2021, 70(9): 095214. doi: 10.7498/aps.70.20210473
    [5] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断. 物理学报, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [6] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, 69(8): 085201. doi: 10.7498/aps.69.20191864
    [7] 胡艳婷, 张钰如, 宋远红, 王友年. 相位角对容性耦合电非对称放电特性的影响. 物理学报, 2018, 67(22): 225203. doi: 10.7498/aps.67.20181400
    [8] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究. 物理学报, 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [9] 乔晓粉, 李晓莉, 刘赫男, 石薇, 刘雪璐, 吴江滨, 谭平恒. 悬浮二维晶体材料反射光谱和光致发光光谱的周期性振荡现象. 物理学报, 2016, 65(13): 136801. doi: 10.7498/aps.65.136801
    [10] 王俊, 王涛, 唐成双, 辛煜. 甚高频激发容性耦合氩等离子体的电子能量分布函数的演变. 物理学报, 2016, 65(5): 055203. doi: 10.7498/aps.65.055203
    [11] 郝莹莹, 孟秀兰, 姚福宝, 赵国明, 王敬, 张连珠. N2-H2容性耦合等离子体电非对称效应的particle-in-cell/Monte Carlo模拟. 物理学报, 2014, 63(18): 185205. doi: 10.7498/aps.63.185205
    [12] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响. 物理学报, 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [13] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断. 物理学报, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [14] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量. 物理学报, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [15] 胡佳, 徐轶君, 叶超. CHF3双频电容耦合放电等离子体特性研究. 物理学报, 2010, 59(4): 2661-2665. doi: 10.7498/aps.59.2661
    [16] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学. 物理学报, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [17] 袁强华, 辛 煜, 黄晓江, 孙 恺, 宁兆元. 13.56 MHz 低频功率对60 MHz射频容性耦合等离子体的电特性的影响. 物理学报, 2008, 57(11): 7038-7043. doi: 10.7498/aps.57.7038
    [18] 宋法伦, 曹金祥, 王舸. 电磁波在径向非均匀球对称等离子体中的衰减. 物理学报, 2004, 53(4): 1110-1115. doi: 10.7498/aps.53.1110
    [19] 徐至展, 余玮, 张文琦, 徐铁峰. 双频激光在不均匀等离子体中的耦合. 物理学报, 1988, 37(7): 1144-1149. doi: 10.7498/aps.37.1144
    [20] 张承福, 柯孚久. 非均匀磁化等离子体中的二维漂移孤波. 物理学报, 1985, 34(3): 298-305. doi: 10.7498/aps.34.298
计量
  • 文章访问数:  5867
  • PDF下载量:  505
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-14
  • 修回日期:  2011-02-04
  • 刊出日期:  2012-01-05

/

返回文章
返回