搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究

李倩倩 郝秋艳 李英 刘国栋

引用本文:
Citation:

稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究

李倩倩, 郝秋艳, 李英, 刘国栋

Theory study of rare earth (Ce, Pr) doped GaN in electronic structrue and optical property

Li Qian-Qian, Hao Qiu-Yan, Li Ying, Liu Guo-Dong
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理平面波赝势法计算了稀土元素 Ce, Pr 掺杂GaN的晶格参数、能带、电子态密度和光学性质, 使用LSDA+U的方法处理具有强关联作用的稀土4f态, 并分析比较计算结果. 计算表明: 掺入 Ce和Pr后的体系相比未掺杂的GaN晶格常数增大, 带隙变窄, 并分别在禁带中和价带顶附近引入了局域的杂质能级, 该能级主要由Ce 和Pr的4f电子提供; 掺杂后都发生了磁有序化并产生磁矩; 最后定性分析了掺杂前后介电函数和光吸收系数的变化, 掺 Ce的体系在介电函数和吸收系数的低能区出现了峰值, 该峰的出现和禁带中的杂质能级到导带底的跃迁有关, 而掺Pr的体系由于带隙变窄使介电峰和吸收边发生红移.
    Using the pseudopotential plane-wave method within the density functional theory as implemented in the Vienna ab-initio simulation package, we investigate the crystal parameters, electronic structures and optical properties of rare earth Ce and Pr doped GaN. The local spin density approximation with Hubbard-U corrections method is used to treat the correlation effect of strongly localized rare-earth 4f electron states. The results show that the crystal parameters increase after doping Ce and Pr in GaN. The Ce impurity introduces defect level in the gap while for Pr the level lies near the valence band maximum, and the defect levels are contributed by Ce and Pr 4f electron states. In addition, the dopings of Ce and Pr give rise to spin polarization and magnetic-order. For GaN:Ce, there appear two new peaks, one is in the low energy region of imaginary dielectric function and the other is in the low energy region of absorption coefficient. These new peaks are probably related to the defect level in the gap. For GaN:Pr, red shifts of the dielectric peak and absorption edge duo to bandgap narrowing are observed.
    • 基金项目: 河北省自然科学基金 (批准号: A2010000013)、天津市自然科学基金(批准号: 10JCYBJC03000) 和国家自然科学基金 (批准号: 50901027) 资助的课题.
    • Funds: Project supported by the Nature Science Foundation of Hebei Province, China (Grant No. A2010000013), the Nature Science Foundation of Tianjin City, China (Grant No. 10JCYBJC03000), and the National Natural Science Foundation of China (Grant No. 50901027).
    [1]

    Morkoc H 1994 J. Appl. Phys. 76 1363

    [2]

    Davies S, Huang T S, Gass M H, Papworth A J, Joyce T B, Chalker P R 2004 Appl. Phys. Lett. 84 2556

    [3]

    Wang T X, Li Y, Liu Y M 2011 Phys. Stat. Sol. B 248 1671

    [4]

    Kang B S, Kim S, Ren F, Johnson J W, Therrien R J, Rajagopal P, Roberts J C, Piner E L, Linthicum K J, Chu S N G, Baik K, Gila B P, Abernathy C R, Pearton S J 2004 Appl. Phys. Lett. 85 2962

    [5]

    Dridi Z, Lazreg A, Rozale H, Bouhafs B 2010 Comp. Mater. Sci. 48 743

    [6]

    Jones R 2006 Opt. Mater. 28 718

    [7]

    Sanna S, Schmidt W G, Frauenheim T, Gerstmann U 2009 Phys. Rev. B 80 104120

    [8]

    Chen S, Dierre B, Lee W, Sekiguchi T, Tomita S, Kudo H, Akimoto K 2010 Appl. Phys. Lett. 96 181901

    [9]

    Jiang L J, Wang X L, Xiao H L, Wang Z G, Yang C B, Zhang M L 2011 Appl. Phys. A 104 429

    [10]

    Steckl A J, Heikenfeld J C, Lee D S, Garter M J, Baker C C, Wang Y Q, Jones R 2002 Select. Top. Quantum Electron. 8 749

    [11]

    Favennec P N, L'Haridon H, Salvi M, Moutonnet D, Le Guillou Y 1989 Electron. Lett. 25 718

    [12]

    Aldabergenova S B, Osvet A, Frank G, Strunk H P, Taylor P C, Andreev A A 2002 J. Non-Cryst. Solids 299-302 709

    [13]

    Lorenz K, Alves E, Wahl U, Monteir T, Dalmasso S, Martin R W, O'Donnell K P, Vianden R 2003 Mater. Sci. Eng. B 105 97

    [14]

    Birkhahn R, Garter M, Steckl A J 1999 Appl. Phys. Lett. 74 2161

    [15]

    Sanna S, Hourahine B, Frauenheim Th, Gerstmann U 2008 Phys. Stat. Sol. C 5 2358

    [16]

    Svane A, Christensen N E, Petit L, Szotek Z, Temmerman W M 2006 Phys. Rev. B 74 165204

    [17]

    Filhol J S, Jones R, Shaw M J, Briddon P R 2004 Appl. Phys. Lett. 84 2841

    [18]

    Davies R, Abernathy C R, Pearton S J, Norton D P, Ivill M P, Ren F 2009 Chem. Eng. Commun. 196 1030

    [19]

    Larson P, Lambrecht W R L 2007 Phys. Rev. B 75 045114

    [20]

    Gao G Y, Yao K L, Liu Z L, Li Y L, Li Y C, Liu Q M 2006 Solid State Commun. 138 494

    [21]

    Xiong Z, Luo L, Peng J, Liu G 2009 J. Phys. Chem. Solids 70 1223

    [22]

    Xing H Y, Fan G H, Zhang Y, Zhao D G 2009 Acta Phys. Sin. 58 450 (in Chinese) [邢海英, 范广涵, 章勇, 赵德刚 2009 物理学报 58 450]

    [23]

    Sun J, Wang H T, He J L, TianY J 2005 Phys. Rev. B 71 125132

    [24]

    Ding S F, Fan G H, Li S T, Xiao B 2007 Acta Phys. Sin. 56 4062 (in Chinese) [丁少锋, 范广涵, 李述体, 肖冰2007 物理学报 56 4062]

    [25]

    Yang Y T, Wu J, Cai Y R, Ding R X, Song J X, Shi L C 2008 Acta Phys. Sin. (in Chinese) 57 7151 [杨银堂, 武军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春 2008 物理学报 57 7151]

    [26]

    Majid A, Iqbal J, Ali A 2011 J. Supercond. Nov. Magn. 24 585

    [27]

    Majid A, Ali A 2009 J. Phys. D: Appl. Phys. 42 045412

    [28]

    Guo J Y, Zheng G, He K H, Chen J Z 2008 Acta Phys. Sin. 57 3740 (in Chinese) [郭建云, 郑广, 何开华, 陈敬中 2008 物理学报 57 3740]

    [29]

    Sheng X C 2003 The Spectrum and Optical Property of Semiconductor (Beijing: Science Press) p76 (in Chinese) [沈学基 2003 半导体光谱和光学性质(第2版) (北京:科学出版社)第76页]

    [30]

    Zhang S, Shi J, Zhang M, Yang M, Li J 2011 J. Phys. D: Appl. Phys. 44 495304

  • [1]

    Morkoc H 1994 J. Appl. Phys. 76 1363

    [2]

    Davies S, Huang T S, Gass M H, Papworth A J, Joyce T B, Chalker P R 2004 Appl. Phys. Lett. 84 2556

    [3]

    Wang T X, Li Y, Liu Y M 2011 Phys. Stat. Sol. B 248 1671

    [4]

    Kang B S, Kim S, Ren F, Johnson J W, Therrien R J, Rajagopal P, Roberts J C, Piner E L, Linthicum K J, Chu S N G, Baik K, Gila B P, Abernathy C R, Pearton S J 2004 Appl. Phys. Lett. 85 2962

    [5]

    Dridi Z, Lazreg A, Rozale H, Bouhafs B 2010 Comp. Mater. Sci. 48 743

    [6]

    Jones R 2006 Opt. Mater. 28 718

    [7]

    Sanna S, Schmidt W G, Frauenheim T, Gerstmann U 2009 Phys. Rev. B 80 104120

    [8]

    Chen S, Dierre B, Lee W, Sekiguchi T, Tomita S, Kudo H, Akimoto K 2010 Appl. Phys. Lett. 96 181901

    [9]

    Jiang L J, Wang X L, Xiao H L, Wang Z G, Yang C B, Zhang M L 2011 Appl. Phys. A 104 429

    [10]

    Steckl A J, Heikenfeld J C, Lee D S, Garter M J, Baker C C, Wang Y Q, Jones R 2002 Select. Top. Quantum Electron. 8 749

    [11]

    Favennec P N, L'Haridon H, Salvi M, Moutonnet D, Le Guillou Y 1989 Electron. Lett. 25 718

    [12]

    Aldabergenova S B, Osvet A, Frank G, Strunk H P, Taylor P C, Andreev A A 2002 J. Non-Cryst. Solids 299-302 709

    [13]

    Lorenz K, Alves E, Wahl U, Monteir T, Dalmasso S, Martin R W, O'Donnell K P, Vianden R 2003 Mater. Sci. Eng. B 105 97

    [14]

    Birkhahn R, Garter M, Steckl A J 1999 Appl. Phys. Lett. 74 2161

    [15]

    Sanna S, Hourahine B, Frauenheim Th, Gerstmann U 2008 Phys. Stat. Sol. C 5 2358

    [16]

    Svane A, Christensen N E, Petit L, Szotek Z, Temmerman W M 2006 Phys. Rev. B 74 165204

    [17]

    Filhol J S, Jones R, Shaw M J, Briddon P R 2004 Appl. Phys. Lett. 84 2841

    [18]

    Davies R, Abernathy C R, Pearton S J, Norton D P, Ivill M P, Ren F 2009 Chem. Eng. Commun. 196 1030

    [19]

    Larson P, Lambrecht W R L 2007 Phys. Rev. B 75 045114

    [20]

    Gao G Y, Yao K L, Liu Z L, Li Y L, Li Y C, Liu Q M 2006 Solid State Commun. 138 494

    [21]

    Xiong Z, Luo L, Peng J, Liu G 2009 J. Phys. Chem. Solids 70 1223

    [22]

    Xing H Y, Fan G H, Zhang Y, Zhao D G 2009 Acta Phys. Sin. 58 450 (in Chinese) [邢海英, 范广涵, 章勇, 赵德刚 2009 物理学报 58 450]

    [23]

    Sun J, Wang H T, He J L, TianY J 2005 Phys. Rev. B 71 125132

    [24]

    Ding S F, Fan G H, Li S T, Xiao B 2007 Acta Phys. Sin. 56 4062 (in Chinese) [丁少锋, 范广涵, 李述体, 肖冰2007 物理学报 56 4062]

    [25]

    Yang Y T, Wu J, Cai Y R, Ding R X, Song J X, Shi L C 2008 Acta Phys. Sin. (in Chinese) 57 7151 [杨银堂, 武军, 蔡玉荣, 丁瑞雪, 宋久旭, 石立春 2008 物理学报 57 7151]

    [26]

    Majid A, Iqbal J, Ali A 2011 J. Supercond. Nov. Magn. 24 585

    [27]

    Majid A, Ali A 2009 J. Phys. D: Appl. Phys. 42 045412

    [28]

    Guo J Y, Zheng G, He K H, Chen J Z 2008 Acta Phys. Sin. 57 3740 (in Chinese) [郭建云, 郑广, 何开华, 陈敬中 2008 物理学报 57 3740]

    [29]

    Sheng X C 2003 The Spectrum and Optical Property of Semiconductor (Beijing: Science Press) p76 (in Chinese) [沈学基 2003 半导体光谱和光学性质(第2版) (北京:科学出版社)第76页]

    [30]

    Zhang S, Shi J, Zhang M, Yang M, Li J 2011 J. Phys. D: Appl. Phys. 44 495304

计量
  • 文章访问数:  5393
  • PDF下载量:  1091
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-16
  • 修回日期:  2012-07-31
  • 刊出日期:  2013-01-05

稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究

  • 1. 河北工业大学材料学院, 天津 300130
    基金项目: 河北省自然科学基金 (批准号: A2010000013)、天津市自然科学基金(批准号: 10JCYBJC03000) 和国家自然科学基金 (批准号: 50901027) 资助的课题.

摘要: 采用基于密度泛函理论的第一性原理平面波赝势法计算了稀土元素 Ce, Pr 掺杂GaN的晶格参数、能带、电子态密度和光学性质, 使用LSDA+U的方法处理具有强关联作用的稀土4f态, 并分析比较计算结果. 计算表明: 掺入 Ce和Pr后的体系相比未掺杂的GaN晶格常数增大, 带隙变窄, 并分别在禁带中和价带顶附近引入了局域的杂质能级, 该能级主要由Ce 和Pr的4f电子提供; 掺杂后都发生了磁有序化并产生磁矩; 最后定性分析了掺杂前后介电函数和光吸收系数的变化, 掺 Ce的体系在介电函数和吸收系数的低能区出现了峰值, 该峰的出现和禁带中的杂质能级到导带底的跃迁有关, 而掺Pr的体系由于带隙变窄使介电峰和吸收边发生红移.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回