搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二硼化钛的高温高压制备及其物性

黎军军 赵学坪 陶强 黄晓庆 朱品文 崔田 王欣

引用本文:
Citation:

二硼化钛的高温高压制备及其物性

黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣

Characterization of TiB2 synthesized at high pressure and high temperature

Li Jun-Jun, Zhao Xue-Ping, Tao Qiang, Huang Xiao-Qing, Zhu Pin-Wen, Cui Tian, Wang Xin
PDF
导出引用
  • 以化学计量配比的Ti, B元素为原料, 在高温高压条件下成功制备出颗粒均匀、致密性大于99% 的二硼化钛(TiB2)体材料. 物性测试结果表明: TiB2的维氏硬度高达39.6 GPa (接近超硬材料的40 GPa); 并呈现出金属导电特性, 电阻率在10-8 Ω.m 的数量级(接近TiB2单晶样品值). TiB2的高硬度与金属特性, 可能与该方法制备的TiB2体材料中均匀的细小晶粒尺寸有关. 该方法为制备功能陶瓷材料提供了新的思路.
    Bulk titanium borides (TiB2) have been successfully synthesized from the stoichiometric boron and titanium powders at high pressure and high temperature (HPHT). The density of TiB2 is higher than 99%. The Vicker's hardness of TiB2 as synthesized is 39.6 GPa which is near to result of the supehard materials. While TiB2 show good metallic characters with the resistivity, 10-8 Ωm, which is near to the value of the single crystal of TiB2. The enhanced properties of TiB2 as synthesized may be attributed to the higher density and uniform crystal size.
    • 基金项目: 国家自然科学基金(批准号: 51172091, 51032001, 91022029)、国家基础科学人才培养基金(批准号: J1103202)和新世纪优秀人才支持计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51172091, 51032001, 91022029), the National Found for Fostering Talents of basic Science (Grant No. J1103202), and the Program for New Century Excellent Talents in University.
    [1]

    Wang M, Li Y W, Cui T, Ma Y M, Zou G T 2008 Appl. Phys. Lett. 93 101905

    [2]

    Gao Q F, G鹡ter K, Walter S 2008 Adv. Mater. 20 3620

    [3]

    Chung H Y, Michelle B W, Jonathan B L, Abby K 2007 Science. 318 316

    [4]

    Liang Y C, Guo W L, Fang Z 2007 Acta. Phys. Sin. 56 4847 (in Chinese) [梁拥成, 郭万林, 方忠 2007 物理学报 56 4847]

    [5]

    Reza M, Andrew T L, Miao X 2011 PNAS 27 10958

    [6]

    Subramanian C 2007 International Journal of Refractory Metals & Hard Materials 25 345

    [7]

    June H P, Yong H L, Young H K, Hyoun E K 2000 J. Am. Ceram. Soc. 83 1542

    [8]

    Vis R K, Mannan S K, Kumar K S, Wolf A 1989 J. Mater. Sci. Lett. 8 409

    [9]

    Xiang J, Li L P, Su W H 2003 Acta. Phys. Sin. 52 1474 (in Chinese) [向军, 李莉萍, 苏文辉 2003 物理学报 52 1474]

    [10]

    Haimin D, Xiangfa L, Jinfeng N 2012 Materials Characterization 63 56

    [11]

    Kunal K, Ramachandran R, Norman M W 2011 J. Eng. Mat. and Tec. 133 024501-1

    [12]

    Roy S K, Biswas A, Banerjee S 1993 Mater. Sci. 5 347

    [13]

    Lepakova O K., Raskolenko L G, Maksimov Y M 2000 Inorganic Materials 36690

    [14]

    He P, Wang W M 2006 Rare Metals Letters 25(1) (in Chinese) [何平, 王为民 2006 稀有金属快报 25(1)]

    [15]

    Xi S T G 1990 Powder metallurgy 37(5) 898 (in Chinese) [西山腾广 1990 粉体粉末冶金 37(5) 898]

    [16]

    Cheng J Y, Zheng H F, Zeng Y C 2000 Science & Technology Review 6 13 (in Chinese) [陈晋阳, 郑海飞, 曾贻善 2000 科技导报 613]

    [17]

    Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429 (in Chinese) [王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张伟, 张剑, 寇自力, 彭放 2008 物理学报 57 5429]

    [18]

    Kumar T S, Kumar A, James A R, Pamu D 2012 Journal of the Australian Ceramic Society Volume 48 96

    [19]

    Dai S S 1984 Reliability Test and Statistical Analysis (Vol. 2) (National Defence Industry Press) p504 (in Chinese) [戴树森 1984 可靠性试验及其统计分析(下)(国防工业出版社) 第507页]

    [20]

    Cheng G L, Peng Z Z, Fan S G, Liu Y C 2010 Bull. Chin. Ceram. Soc. 2 29 (in Chinese) [陈广乐, 彭珍珍, 范仕刚, 刘允超2010硅酸盐通报 2 29]

    [21]

    Park J H, Lee Y H, Koh Y H, Kim H E 2000 Communications of the American Ceramic Society 83 1542

    [22]

    Kunca F, Musila J, Mayrhoferb P H, Mittererb C 2003 Surface and Coatings Technology 53 174

    [23]

    Yu Y L 2000 Principles of Metallography (Metallurgical Industry Press) p321-425 (in Chinese) [余永宁 2000 金属学原理(冶金工业出版社) 第321–425页]

    [24]

    Ohfuji H, Okimoto S, Kunimoto T, Isobe F 2012 Phys. Chem. Minerals. 39 543

    [25]

    Li X Y, Manghnani M H, Li C M 1996 J. Appl. Phys. 80 7

    [26]

    Ra M , Wang C C, Chen W, S A Akbar 1995 J. Am. Ceram. Soc. 78 1380

    [27]

    Mcleod A D, Haggerty J S, Sadoway D R 1984 J. Am. Ceram. Soc. 67 705

    [28]

    Konigshofer R, Fu S, Lengauer W, Haas R, Rabitsch K 2005 International Journal of Refractory Metals & Hard Materials 23 50

  • [1]

    Wang M, Li Y W, Cui T, Ma Y M, Zou G T 2008 Appl. Phys. Lett. 93 101905

    [2]

    Gao Q F, G鹡ter K, Walter S 2008 Adv. Mater. 20 3620

    [3]

    Chung H Y, Michelle B W, Jonathan B L, Abby K 2007 Science. 318 316

    [4]

    Liang Y C, Guo W L, Fang Z 2007 Acta. Phys. Sin. 56 4847 (in Chinese) [梁拥成, 郭万林, 方忠 2007 物理学报 56 4847]

    [5]

    Reza M, Andrew T L, Miao X 2011 PNAS 27 10958

    [6]

    Subramanian C 2007 International Journal of Refractory Metals & Hard Materials 25 345

    [7]

    June H P, Yong H L, Young H K, Hyoun E K 2000 J. Am. Ceram. Soc. 83 1542

    [8]

    Vis R K, Mannan S K, Kumar K S, Wolf A 1989 J. Mater. Sci. Lett. 8 409

    [9]

    Xiang J, Li L P, Su W H 2003 Acta. Phys. Sin. 52 1474 (in Chinese) [向军, 李莉萍, 苏文辉 2003 物理学报 52 1474]

    [10]

    Haimin D, Xiangfa L, Jinfeng N 2012 Materials Characterization 63 56

    [11]

    Kunal K, Ramachandran R, Norman M W 2011 J. Eng. Mat. and Tec. 133 024501-1

    [12]

    Roy S K, Biswas A, Banerjee S 1993 Mater. Sci. 5 347

    [13]

    Lepakova O K., Raskolenko L G, Maksimov Y M 2000 Inorganic Materials 36690

    [14]

    He P, Wang W M 2006 Rare Metals Letters 25(1) (in Chinese) [何平, 王为民 2006 稀有金属快报 25(1)]

    [15]

    Xi S T G 1990 Powder metallurgy 37(5) 898 (in Chinese) [西山腾广 1990 粉体粉末冶金 37(5) 898]

    [16]

    Cheng J Y, Zheng H F, Zeng Y C 2000 Science & Technology Review 6 13 (in Chinese) [陈晋阳, 郑海飞, 曾贻善 2000 科技导报 613]

    [17]

    Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429 (in Chinese) [王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张伟, 张剑, 寇自力, 彭放 2008 物理学报 57 5429]

    [18]

    Kumar T S, Kumar A, James A R, Pamu D 2012 Journal of the Australian Ceramic Society Volume 48 96

    [19]

    Dai S S 1984 Reliability Test and Statistical Analysis (Vol. 2) (National Defence Industry Press) p504 (in Chinese) [戴树森 1984 可靠性试验及其统计分析(下)(国防工业出版社) 第507页]

    [20]

    Cheng G L, Peng Z Z, Fan S G, Liu Y C 2010 Bull. Chin. Ceram. Soc. 2 29 (in Chinese) [陈广乐, 彭珍珍, 范仕刚, 刘允超2010硅酸盐通报 2 29]

    [21]

    Park J H, Lee Y H, Koh Y H, Kim H E 2000 Communications of the American Ceramic Society 83 1542

    [22]

    Kunca F, Musila J, Mayrhoferb P H, Mittererb C 2003 Surface and Coatings Technology 53 174

    [23]

    Yu Y L 2000 Principles of Metallography (Metallurgical Industry Press) p321-425 (in Chinese) [余永宁 2000 金属学原理(冶金工业出版社) 第321–425页]

    [24]

    Ohfuji H, Okimoto S, Kunimoto T, Isobe F 2012 Phys. Chem. Minerals. 39 543

    [25]

    Li X Y, Manghnani M H, Li C M 1996 J. Appl. Phys. 80 7

    [26]

    Ra M , Wang C C, Chen W, S A Akbar 1995 J. Am. Ceram. Soc. 78 1380

    [27]

    Mcleod A D, Haggerty J S, Sadoway D R 1984 J. Am. Ceram. Soc. 67 705

    [28]

    Konigshofer R, Fu S, Lengauer W, Haas R, Rabitsch K 2005 International Journal of Refractory Metals & Hard Materials 23 50

  • [1] 郭琳琳, 赵梓彤, 隋明宏, 王鹏, 刘冰冰. 限域条件下氮分子的高温高压诱导聚合研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240173
    [2] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [3] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [4] 彭军辉, TikhonovEvgenii. 三元Hf-C-N体系的空位有序结构及其力学性质和电子性质的第一性原理研究. 物理学报, 2021, 70(21): 216101. doi: 10.7498/aps.70.20210244
    [5] 江明全, 李欣, 房雷鸣, 谢雷, 陈喜平, 胡启威, 李强, 李青泽, 陈波, 贺端威. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证. 物理学报, 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
    [6] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展. 物理学报, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [7] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法. 物理学报, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [8] 沙莎, 王伟丽, 吴宇昊, 魏炳波. 深过冷条件下Co7Mo6金属间化合物的枝晶生长和维氏硬度研究. 物理学报, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [9] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [10] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性. 物理学报, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [11] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [12] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定. 物理学报, 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [13] 房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安. 添加Fe(C5H5)2合成氢掺杂金刚石大单晶及其表征. 物理学报, 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [14] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [15] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能. 物理学报, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [16] 卢志文, 仲志国, 刘克涛, 宋海珍, 李根全. 高温高压下Ag-Mg-Zn合金中金属间化合物的微观结构与热动力学性质的第一性原理计算. 物理学报, 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [17] 赵艳红, 刘海风, 张其黎. 高温高压下爆轰产物中不同种分子间的相互作用. 物理学报, 2012, 61(23): 230509. doi: 10.7498/aps.61.230509
    [18] 赵艳红, 刘海风, 张弓木, 张广财. 高温高压下爆轰产物分子间相互作用的研究. 物理学报, 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [19] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备. 物理学报, 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [20] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究. 物理学报, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
计量
  • 文章访问数:  6998
  • PDF下载量:  905
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-31
  • 修回日期:  2012-09-10
  • 刊出日期:  2013-01-05

/

返回文章
返回