搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电压电流的IGBT关断机理与关断时间研究

刘宾礼 刘德志 罗毅飞 唐勇 汪波

引用本文:
Citation:

基于电压电流的IGBT关断机理与关断时间研究

刘宾礼, 刘德志, 罗毅飞, 唐勇, 汪波

Investigation into the turn-off mechanism and time of IGBT based on voltage and current

Liu Bin-Li, Liu De-Zhi, Luo Yi-Fei, Tang Yong, Wang Bo
PDF
导出引用
  • 基于半导体物理和IGBT基本结构, 深入论述了IGBT关断机理, 推导出IGBT关断时间随电压和电流的变化规律: 关断时间随电压的增大而增大, 随电流的增大而减小. 查明了变化规律的物理机理, 仿真和实验结果验证了理论推导与所得变化规律的正确性. 提出采用指数与双曲线复合规律描述IGBT关断时间的变化. 对深化IGBT关断机理和解决电力电子装置死区时间设置等工程问题具有一定的理论意义和应用价值.
    Based on semiconductor physics and the essential structure of IGBT, the turn-off mechanism of IGBT is deeply discussed regarding the problem of turn-off time changing with voltage and current. The laws of turn-off time changing with voltage and current are deduced, i.e., the turn-off time increases with voltage increasing and decreases with current increasing. The physical mechanisms of the laws are found out. The simulation results and experimental results, demonstrate that the derived and the existing law are constant, thereby proving the correctness of the derived law. It is put forward that the law of IGBT turn-off time changing with current and voltage accords with the complex law of exponent and hyperbola. For further studying the IGBT turn-off mechanism and solving the engineering puzzles including the power electronic dead time setting, the present study is significant in theory and practical application.
    • 基金项目: 国家自然科学基金重点项目(批准号: 50737004)、国家自然科学基金面上项目(批准号: 51277178) 和国家自然科学基金创新研究群体科学基金(批准号: 50721063)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50737004), the National Natural Science Foundation of China (Grant No. 51277178), and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 50721063).
    [1]

    Xu D H 2008 Modern power electronics device principle and Application technology (Beijing: Mechanical Industry Press) p92 (in Chinese) [徐德鸿 2008 现代电力电子器件原理与应用技术 (北京: 机械工业出版社) 第92页]

    [2]

    Lin W X 2002 Modern power electronics circuit (Hangzhou: Zhejiang University Press) p44 (in Chinese) [林渭勋 2002 现代电力电子电路 (杭州: 浙江大学出版社) 第44页]

    [3]

    Angus B, Yang S Y 2011 IEEE Transactions on Power Electronics 26 30193031

    [4]

    Wu Y, Zhang W R, Liu X M 2005 Power Semiconductor Devices: Theory and Application (Beijing: Chemical Industry Press) p262 (in Chinese) [吴郁, 张万荣, 刘兴明 2005 功率半导体器件–理论及应用 (北京: 化学工业出版社) 第262页]

    [5]

    Yuan S C 2007 IGBT Field Effect Semiconductor Power Devices (Beijing: Science Press) p100 (in Chinese) [袁寿财 2007 IGBT场效应半导体功率器件导论 (北京: 科学出版社) 第100页]

    [6]

    Azzopardia S, Benmansoura A, Ishikob M, Woirgarda E 2005 Microelectronics Reliability 45 1700

    [7]

    Chen Z M, Li S Z 2008 Wide bandgap semiconductor power electronic device and its application (Beijing: Mechanical Industry Press) p88 (in Chinese) [陈治明, 李守智 2008 宽禁带半导体电力电子器件及其应用 (北京: 机械工业出版社) 第88页]

    [8]

    Yuan L Q, Zhao Z M, Song G S and Wang Z Y 2011 Power semiconductor device theory and application (Beijing: Mechanical Industry Press) p111 (in Chinese) [袁立强, 赵争鸣, 宋高升, 王正元 2011 电力半导体器件原理与应用 (北京: 机械工业出版社) 第111页]

    [9]

    Zhao Y Q, Yao S Y and Xie X D 2010 Semiconductor physics and devices (3rd Edn.) (Beijing: Electronics Industry Press) p212 (in Chinese) [赵毅强, 姚素英, 解晓东 2010 半导体物理与器件 (第三版) (北京: 电子工业出版社) 第212页]

    [10]

    Huang R, Wang Y 2010 Semiconductor physics and device fundamentals (Beijing: Electronics Industry Press) p325 (in Chinese) [黄如, 王漪 2010 半导体物理与器件基础 (北京: 电子工业出版社) 第325页]

    [11]

    Fang J P, Hao Y, Liu H X 2001 Acta Phys. Sin. 50 1172 (in Chinese) [方建平, 郝跃, 刘红侠 2001 物理学报 50 1172]

    [12]

    Zhou X D, Lin W, Fang J 2006 Acta Phys. Sin. 55 3360 (in Chinese) [周贤达, 林薇, 方健 2006 物理学报 55 3360]

    [13]

    Nishad P, Diganta D, Michael P 2012 Microelectronics Reliability 52 482

    [14]

    Urresti J, Castellazzi A 2007 Microelectronics Reliability 47 1725

    [15]

    Bryant A T, Kang X S 2006 IEEE Transactions on Power Electronics 21 295

    [16]

    Marco A R, Abraham C S 2011 IEEE Transactions on Industrial Electronics 58 1625

    [17]

    Du M X, Wei K X 2011 Acta Phys. Sin. 60 108401 (in Chinese) [杜明星, 魏克新 2011 物理学报 60 108401]

    [18]

    Patrick R P, Enrico S, Jerry L 2003 IEEE Transactions on Power Electronics 18 1220

    [19]

    Tang Y 2010 Ph. D. Study on Device Model Theory (Wuhan: Naval University of Engineering) (in Chinese) [唐勇 2010 博士学位论文 (武汉: 海军工程大学)]

    [20]

    Tang Y, Hu A, Chen M 2009 Transactions of China Electro Technical Society 24 76

  • [1]

    Xu D H 2008 Modern power electronics device principle and Application technology (Beijing: Mechanical Industry Press) p92 (in Chinese) [徐德鸿 2008 现代电力电子器件原理与应用技术 (北京: 机械工业出版社) 第92页]

    [2]

    Lin W X 2002 Modern power electronics circuit (Hangzhou: Zhejiang University Press) p44 (in Chinese) [林渭勋 2002 现代电力电子电路 (杭州: 浙江大学出版社) 第44页]

    [3]

    Angus B, Yang S Y 2011 IEEE Transactions on Power Electronics 26 30193031

    [4]

    Wu Y, Zhang W R, Liu X M 2005 Power Semiconductor Devices: Theory and Application (Beijing: Chemical Industry Press) p262 (in Chinese) [吴郁, 张万荣, 刘兴明 2005 功率半导体器件–理论及应用 (北京: 化学工业出版社) 第262页]

    [5]

    Yuan S C 2007 IGBT Field Effect Semiconductor Power Devices (Beijing: Science Press) p100 (in Chinese) [袁寿财 2007 IGBT场效应半导体功率器件导论 (北京: 科学出版社) 第100页]

    [6]

    Azzopardia S, Benmansoura A, Ishikob M, Woirgarda E 2005 Microelectronics Reliability 45 1700

    [7]

    Chen Z M, Li S Z 2008 Wide bandgap semiconductor power electronic device and its application (Beijing: Mechanical Industry Press) p88 (in Chinese) [陈治明, 李守智 2008 宽禁带半导体电力电子器件及其应用 (北京: 机械工业出版社) 第88页]

    [8]

    Yuan L Q, Zhao Z M, Song G S and Wang Z Y 2011 Power semiconductor device theory and application (Beijing: Mechanical Industry Press) p111 (in Chinese) [袁立强, 赵争鸣, 宋高升, 王正元 2011 电力半导体器件原理与应用 (北京: 机械工业出版社) 第111页]

    [9]

    Zhao Y Q, Yao S Y and Xie X D 2010 Semiconductor physics and devices (3rd Edn.) (Beijing: Electronics Industry Press) p212 (in Chinese) [赵毅强, 姚素英, 解晓东 2010 半导体物理与器件 (第三版) (北京: 电子工业出版社) 第212页]

    [10]

    Huang R, Wang Y 2010 Semiconductor physics and device fundamentals (Beijing: Electronics Industry Press) p325 (in Chinese) [黄如, 王漪 2010 半导体物理与器件基础 (北京: 电子工业出版社) 第325页]

    [11]

    Fang J P, Hao Y, Liu H X 2001 Acta Phys. Sin. 50 1172 (in Chinese) [方建平, 郝跃, 刘红侠 2001 物理学报 50 1172]

    [12]

    Zhou X D, Lin W, Fang J 2006 Acta Phys. Sin. 55 3360 (in Chinese) [周贤达, 林薇, 方健 2006 物理学报 55 3360]

    [13]

    Nishad P, Diganta D, Michael P 2012 Microelectronics Reliability 52 482

    [14]

    Urresti J, Castellazzi A 2007 Microelectronics Reliability 47 1725

    [15]

    Bryant A T, Kang X S 2006 IEEE Transactions on Power Electronics 21 295

    [16]

    Marco A R, Abraham C S 2011 IEEE Transactions on Industrial Electronics 58 1625

    [17]

    Du M X, Wei K X 2011 Acta Phys. Sin. 60 108401 (in Chinese) [杜明星, 魏克新 2011 物理学报 60 108401]

    [18]

    Patrick R P, Enrico S, Jerry L 2003 IEEE Transactions on Power Electronics 18 1220

    [19]

    Tang Y 2010 Ph. D. Study on Device Model Theory (Wuhan: Naval University of Engineering) (in Chinese) [唐勇 2010 博士学位论文 (武汉: 海军工程大学)]

    [20]

    Tang Y, Hu A, Chen M 2009 Transactions of China Electro Technical Society 24 76

  • [1] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流. 锡基钙钛矿太阳能电池载流子传输层的探讨. 物理学报, 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [2] 徐晗, 张璐. 考虑空间电荷层效应的氧离子导体电解质内载流子传输特性. 物理学报, 2021, 70(6): 068801. doi: 10.7498/aps.70.20201651
    [3] 朱玥, 张子良, 杨彦佶, 薛荣峰, 崔苇苇, 陆波, 王娟, 陈田祥, 王于仨, 李炜, 韩大炜, 霍嘉, 胡渭, 李茂顺, 张艺, 祝宇轩, 刘苗, 赵晓帆, 陈勇. 硬X射线调制望远镜低能探测器量子效率标定. 物理学报, 2017, 66(11): 112901. doi: 10.7498/aps.66.112901
    [4] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [5] 谭骥, 朱阳军, 卢烁今, 田晓丽, 滕渊, 杨飞, 张广银, 沈千行. 绝缘栅双极型晶体管感性负载关断下电压变化率的建模与仿真研究. 物理学报, 2016, 65(15): 158501. doi: 10.7498/aps.65.158501
    [6] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬. 电子辐照下GaAs/Ge太阳电池载流子输运机理研究. 物理学报, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [7] 杨冰洋, 何大伟, 王永生. Bathocuproine/Ag复合电极对于聚合物光伏器件效率和稳定性的影响. 物理学报, 2015, 64(10): 108801. doi: 10.7498/aps.64.108801
    [8] 周昕杰, 李蕾蕾, 周毅, 罗静, 于宗光. 辐照下背栅偏置对部分耗尽型绝缘层上硅器件背栅效应影响及机理分析. 物理学报, 2012, 61(20): 206102. doi: 10.7498/aps.61.206102
    [9] 张希, 包伯成, 王金平, 马正华, 许建平. 固定关断时间控制Buck变换器输出电容等效串联电阻的稳定性分析. 物理学报, 2012, 61(16): 160503. doi: 10.7498/aps.61.160503
    [10] 祁洪飞, 刘大博, 成波, 郝维昌, 王天民. Ag反点阵列修饰TiO2 薄膜的制备及光催化性能研究. 物理学报, 2012, 61(22): 228201. doi: 10.7498/aps.61.228201
    [11] 李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展. CdTe/CdS核壳结构量子点超快载流子动力学. 物理学报, 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [12] 滕利华, 王霞. 载流子复合对时间分辨法拉第旋转光谱的影响. 物理学报, 2011, 60(5): 057202. doi: 10.7498/aps.60.057202
    [13] 胡辉勇, 舒钰, 张鹤鸣, 宋建军, 宣荣喜, 秦珊珊, 屈江涛. 含有本征SiGe层的SiGe异质结双极晶体管集电结耗尽层宽度模型. 物理学报, 2011, 60(1): 017303. doi: 10.7498/aps.60.017303
    [14] 张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃. 背势垒层结构对AlGaN/GaN双异质结载流子分布特性的影响. 物理学报, 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [15] 哈力木拉提, 阿 拜, 拜 山, 艾买提. p-n结二极管结区边界附近的交流电特性. 物理学报, 2008, 57(2): 1161-1165. doi: 10.7498/aps.57.1161
    [16] 刘海君, 鄢永高, 唐新峰, 尹玲玲, 张清杰. p型Ag0.5(Pb8-xSnx)In0.5Te10化合物的制备及其热电性能. 物理学报, 2007, 56(12): 7309-7314. doi: 10.7498/aps.56.7309
    [17] 王 宇, 华玉林, 吴晓明, 张国辉, 惠娟利, 张丽娟, 刘 倩, 印寿根. 发光层和空穴传输层对白色电致发光器件性能的影响. 物理学报, 2007, 56(12): 7213-7218. doi: 10.7498/aps.56.7213
    [18] 郁黎明, 王奇. 载流子影响下铁磁膜中静磁孤子的存在性分析. 物理学报, 2001, 50(5): 958-963. doi: 10.7498/aps.50.958
    [19] 任红霞, 郝 跃. 新型槽栅PMOSFET热载流子退化机理与抗热载流子效应研究. 物理学报, 2000, 49(9): 1683-1688. doi: 10.7498/aps.49.1683
    [20] 魏希文. 未耗尽载流子对P-N结反向特性的影响. 物理学报, 1966, 22(7): 781-797. doi: 10.7498/aps.22.781
计量
  • 文章访问数:  6662
  • PDF下载量:  1947
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-07
  • 修回日期:  2012-10-29
  • 刊出日期:  2013-03-05

/

返回文章
返回