搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用光电离技术探测钐原子的奇宇称束缚激发态的光谱

杨騄 戴长建 赵艳红

引用本文:
Citation:

用光电离技术探测钐原子的奇宇称束缚激发态的光谱

杨騄, 戴长建, 赵艳红

Photoionization of odd-parity bound excited states of Sm atom

Yang Lu, Dai Chang-Jian, Zhao Yan-Hong
PDF
导出引用
  • 采用光电离探测方法,对钐原子奇宇称束缚激发态进行了系统研究.通过设计三条不同的激发路径, 采用共振激发方式,先将钐原子分三步从基态激发到不同的束缚激发态,然后采用光电离手段对其进行探测. 通过对第三步激发光的波长进行大范围的扫描,在同一能域内获得了三组不同的光谱. 通过比对三条路径所得到的三组光谱,不仅精确确定了大量奇宇称束缚激发态的能级位置, 而且还获得了相应跃迁的相对强度的信息.最后,通过运用三条不同的激发路径的选择定则, 还确定了上述能级的总角动量.
    The photoionization detection method is employed to systematically study the odd-parity bound-excited states of Sm atom. Three different excitation paths are designed to carry out three-step excitation and photoionization processes for the Sm atom in the same energy region. By scanning the wavelength of third-step dye laser not only the level energies of a large number of odd-parity bound-excited states are determined, but also the information about relative intensity of the corresponding transition is obtained. Comparison of the three groups of spectra corresponding to the three paths enables us to assign the J-value, the total angular momentum of the excited states of Sm atom uniquely. In addition, a small number of level energies measured with different methods previously are also confirmed in this work.
    • 基金项目: 国家自然科学基金(批准号: 10674102, 11174218)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674102, 11174218).
    [1]

    Kondo T, Angom D, Endo I, Fukumi A, Horiguchi T, Iinuma M, Takahashi T 2003 The European Physical Journal D 25(2) 103

    [2]

    Xiao Y, Dai C J, Zhao H Y, Qin W J 2009 Acta Phys. Sin. 58 3071 (in Chinese) [肖颖, 戴长建, 赵洪英, 秦文杰 2009 物理学报 58 3071]

    [3]

    Yuan W G, Dai C J, Xin S, Zhao H Y, Guan F 2008Acta Phys. Sin. 57 4076 (in Chinese) [袁卫国, 戴长建, 靳嵩, 赵洪英, 关锋 2008 物理学报 57 4076]

    [4]

    Liu H P, Quan W, Shen L, Connerade J P, Zhan M 2007 Phys. Rev. A 76 013412

    [5]

    Xiao Y, Dai C J, Qin W J 2010 Chin. Phys. B 19 063202

    [6]

    Gomonai A I, Kudelich O I 2002 Optics and Spectroscopy 93(2)

    [7]

    Bushaw B A, Nortershauser W, Blaum K 2003 Spectrochimica Acta B 58 1083

    [8]

    Kim J T, Yi J, Rhee Y 1999 Journal of the Korean Physical Society 35 194

    [9]

    Olmschenk S, Hayes D, Matsukevich D N, Maunz P, Moehring D L, Younge K C, Monroe C 2009 Phys. Rev. A 80 022502

    [10]

    Ali R, Nadeem A, Yaseen M, Aslam M, Bhatti S A, Baig M A 1999 J. Phys. B: At. Mol. Opt. Phys. 32 4361

    [11]

    Qin W J, Dai C J, Xiao Y 2010 J. Quant Spectrosc Radiat Transfer, 111 63

    [12]

    Qin W J, Dai C J, Xiao Y 2010 J. Quant Spectrosc Radiat Transfer, 111 997

    [13]

    Jayasekharan T, Razvi M A N, Bhale G L 2000 J. Opt. Soc. Am. B (17) 1607

    [14]

    Pulhani A K, Shah M L, Dev V 2005 J. Opt. Soc. Am. B (22) 1117

    [15]

    Li M, Dai C J, Xie J 2010 Acta Phys. Sin. 59 228 (in Chinese) [李鸣, 戴长建, 谢军2010 物理学报 59 228]

    [16]

    Zhao Y H, Dai C J, Ye S W 2012 Acta Phys. Sin. 61 033201 (in Chinese) [赵艳红, 戴长建, 野仕伟 2012 物理学报 61 033201]

    [17]

    Li M, Dai C J, Xie J 2012 Acta Phys. Sin. 61 (in Chinese) [李鸣, 戴长建, 谢军 2012 物理学报 61]

  • [1]

    Kondo T, Angom D, Endo I, Fukumi A, Horiguchi T, Iinuma M, Takahashi T 2003 The European Physical Journal D 25(2) 103

    [2]

    Xiao Y, Dai C J, Zhao H Y, Qin W J 2009 Acta Phys. Sin. 58 3071 (in Chinese) [肖颖, 戴长建, 赵洪英, 秦文杰 2009 物理学报 58 3071]

    [3]

    Yuan W G, Dai C J, Xin S, Zhao H Y, Guan F 2008Acta Phys. Sin. 57 4076 (in Chinese) [袁卫国, 戴长建, 靳嵩, 赵洪英, 关锋 2008 物理学报 57 4076]

    [4]

    Liu H P, Quan W, Shen L, Connerade J P, Zhan M 2007 Phys. Rev. A 76 013412

    [5]

    Xiao Y, Dai C J, Qin W J 2010 Chin. Phys. B 19 063202

    [6]

    Gomonai A I, Kudelich O I 2002 Optics and Spectroscopy 93(2)

    [7]

    Bushaw B A, Nortershauser W, Blaum K 2003 Spectrochimica Acta B 58 1083

    [8]

    Kim J T, Yi J, Rhee Y 1999 Journal of the Korean Physical Society 35 194

    [9]

    Olmschenk S, Hayes D, Matsukevich D N, Maunz P, Moehring D L, Younge K C, Monroe C 2009 Phys. Rev. A 80 022502

    [10]

    Ali R, Nadeem A, Yaseen M, Aslam M, Bhatti S A, Baig M A 1999 J. Phys. B: At. Mol. Opt. Phys. 32 4361

    [11]

    Qin W J, Dai C J, Xiao Y 2010 J. Quant Spectrosc Radiat Transfer, 111 63

    [12]

    Qin W J, Dai C J, Xiao Y 2010 J. Quant Spectrosc Radiat Transfer, 111 997

    [13]

    Jayasekharan T, Razvi M A N, Bhale G L 2000 J. Opt. Soc. Am. B (17) 1607

    [14]

    Pulhani A K, Shah M L, Dev V 2005 J. Opt. Soc. Am. B (22) 1117

    [15]

    Li M, Dai C J, Xie J 2010 Acta Phys. Sin. 59 228 (in Chinese) [李鸣, 戴长建, 谢军2010 物理学报 59 228]

    [16]

    Zhao Y H, Dai C J, Ye S W 2012 Acta Phys. Sin. 61 033201 (in Chinese) [赵艳红, 戴长建, 野仕伟 2012 物理学报 61 033201]

    [17]

    Li M, Dai C J, Xie J 2012 Acta Phys. Sin. 61 (in Chinese) [李鸣, 戴长建, 谢军 2012 物理学报 61]

  • [1] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [2] 戚晓秋, 汪峰, 戴长建. 碱金属原子的光激发与光电离. 物理学报, 2015, 64(13): 133201. doi: 10.7498/aps.64.133201
    [3] 田原野, 郭福明, 曾思良, 杨玉军. 原子激发态在高频强激光作用下的光电离研究. 物理学报, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [4] 赵健东, 辛洁. 高激发态原子的相干效应 . 物理学报, 2012, 61(19): 193302. doi: 10.7498/aps.61.193302
    [5] 赵艳红, 戴长建, 野仕伟. Sm原子的偶宇称高激发态的光谱研究. 物理学报, 2012, 61(3): 033201. doi: 10.7498/aps.61.033201
    [6] 李鸣, 戴长建, 谢军. 用双光子电离探测技术研究奇宇称的Sm原子光谱. 物理学报, 2010, 59(5): 3154-3161. doi: 10.7498/aps.59.3154
    [7] 赵洪英, 戴长建, 关锋. 钐原子的两步激发共振光电离光谱. 物理学报, 2009, 58(1): 215-222. doi: 10.7498/aps.58.215
    [8] 肖颖, 戴长建, 赵洪英, 秦文杰. 铕原子奇宇称高激发态共振电离光谱的研究. 物理学报, 2009, 58(5): 3071-3077. doi: 10.7498/aps.58.3071
    [9] 祁永昌. 电子-狄喇克双子束缚态的宇称性质及其斯塔克效应. 物理学报, 1996, 45(3): 373-379. doi: 10.7498/aps.45.373
    [10] 沈异凡, 李万兴. 激发态铯原子间的碰撞能量转移. 物理学报, 1993, 42(11): 1766-1773. doi: 10.7498/aps.42.1766
    [11] 沈异凡, 李万兴. 激发态Na(3P)原子的碰撞缔合电离. 物理学报, 1993, 42(1): 32-39. doi: 10.7498/aps.42.32
    [12] 张森, 梅式民, 邱济真, 徐云飞. SrI 4dnp和4dnf奇宇称J=1系列自电离态光谱. 物理学报, 1990, 39(10): 1536-1541. doi: 10.7498/aps.39.1536
    [13] 吴璧如, 徐云飞, 郑幼凤, 胡永炎, 陆杰. 镱的奇宇称自电离谱. 物理学报, 1990, 39(7): 48-53. doi: 10.7498/aps.39.48
    [14] 鲍敏琪, 仝晓民, 李家明. 离化态原子的激发态结构. 物理学报, 1989, 38(11): 1802-1808. doi: 10.7498/aps.38.1802
    [15] 刘磊, 仝晓民, 李家明. 离化态铁原子光电离截面研究. 物理学报, 1988, 37(11): 1800-1806. doi: 10.7498/aps.37.1800
    [16] 刘磊, 李家明. Fr原子的激发态结构. 物理学报, 1988, 37(12): 2053-2056. doi: 10.7498/aps.37.2053
    [17] 李白文, 李名生. Li原子激发态的电子关联计算. 物理学报, 1986, 35(8): 1055-1061. doi: 10.7498/aps.35.1055
    [18] 梁晓玲, 李家明. 激发态原子振子强度密度极小点. 物理学报, 1985, 34(11): 1479-1487. doi: 10.7498/aps.34.1479
    [19] 杨桂林, 徐游, 初大平, 薛登平, 翟宏如. 奇宇称晶场对Ce3+离子能级劈裂的影响. 物理学报, 1983, 32(2): 259-266. doi: 10.7498/aps.32.259
    [20] 张宗烨, 余友文, 朱熙泉. O16偶宇称态的结构(Ⅰ). 物理学报, 1965, 21(5): 897-906. doi: 10.7498/aps.21.897
计量
  • 文章访问数:  3741
  • PDF下载量:  485
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-18
  • 修回日期:  2012-10-26
  • 刊出日期:  2013-03-05

用光电离技术探测钐原子的奇宇称束缚激发态的光谱

  • 1. 显示材料与光电器件教育部重点实验室, 天津 300384; 天津理工大学理学院, 天津 300384
    基金项目: 国家自然科学基金(批准号: 10674102, 11174218)资助的课题.

摘要: 采用光电离探测方法,对钐原子奇宇称束缚激发态进行了系统研究.通过设计三条不同的激发路径, 采用共振激发方式,先将钐原子分三步从基态激发到不同的束缚激发态,然后采用光电离手段对其进行探测. 通过对第三步激发光的波长进行大范围的扫描,在同一能域内获得了三组不同的光谱. 通过比对三条路径所得到的三组光谱,不仅精确确定了大量奇宇称束缚激发态的能级位置, 而且还获得了相应跃迁的相对强度的信息.最后,通过运用三条不同的激发路径的选择定则, 还确定了上述能级的总角动量.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回