搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定性边缘表示与提取的认知物理学方法

吴涛 金义富 侯睿 杨俊杰

引用本文:
Citation:

不确定性边缘表示与提取的认知物理学方法

吴涛, 金义富, 侯睿, 杨俊杰

Cognitive physics-based method for image edge representation and extraction with uncertainty

Wu Tao, Jin Yi-Fu, Hou Rui, Yang Jun-Jie
PDF
导出引用
  • 图像边缘检测是图像处理的一种重要技术, 其中不确定性表示与提取是关键问题之一. 在现有模拟物理学思想的相关方法基础之上, 提出了基于认知物理学的不确定性边缘表示与提取方法. 该方法利用数据场发现图像全局灰度认知, 构建图像灰度值空间到数据场势值空间的映射关系, 从场论的角度建立了可扩展的理论框架、统一了现有相关方法; 另一方面, 构造半升云模型建立云模型确定度的变化幅度与边缘像素表示与提取的内在关联关系, 最终在认知物理学核心理论的支持下实现图像不确定性边缘表示与提取. 所提出的方法时间耗费近似与图像尺寸成线性关系. 定性和定量的实验结果及分析表明, 该方法的分割效果较好, 性能稳定, 具有合理性和有效性.
    Image edge detection is an important tool of image processing, in which edge representation and extraction with uncertainty is one of key issues. Based on the physics-like methods for image edge representation and extraction, a novel cognitive physics-based method with uncertainty is proposed. The method uses data field to discover the global information from the image and then to map it from grayscale space to the appropriate potential space. From the point of view of the field theory, the method establishes an extensible theoretical framework and unifies the existing physics-like methods. On the other hand, the method defines the ascending half-cloud to construct the internal relationship between the range of cloud uncertainty degree and the edge representation and extraction. Finally, the method achieves image edge representation and extraction with uncertainty using the cognitive physics. The time complexity of the proposed algorithm is approximately linear in the size of the original image. It is indicated by the quantitative and qualitative experiments that the proposed method yields accurate and robust result, and is reasonable and effective.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB719903)和 广东高校优秀青年创新人才培养计划(批准号: 2012LYM-0092) 资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB719903) and the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province, China (Grant No. 2012LYM-0092).
    [1]

    Wu Y Q, Zhang J K 2010 Acta Phys. Sin. 59 5487 (in Chinese) [吴一全, 张金矿 2010 物理学报 59 5487]

    [2]

    Ma J F, Hou K, Bao S L, Chen C 2011 Chin. Phys. B 20 028701

    [3]

    Tang Y G, Di Q Y, Zhao L X, Guan X P, Liu F C 2009 Acta Phys. Sin. 58 9 (in Chinese) [唐英干, 邸秋艳, 赵立兴, 关新平, 刘福才 2009 物理学报 58 9]

    [4]

    Song F J, Jutamulia S, Song J L, Yao S Y, Wang D 2003 Acta Phys. Sin. 52 3055 (in Chinese) [宋菲君, 赵文杰, Jutamulia S, 宋建力, 姚思一, 王栋 2003 物理学报 52 3055]

    [5]

    He S H, Yang S Q, Shi A G, Li T W 2009 Acta Phys. Sin. 58 794 (in Chinese) [何四华, 杨绍清, 石爱国, 李天伟 2009 物理学报 58 794]

    [6]

    Dong J T, Xu Y, Zong X P 2006 Acta Phys. Sin. 55 3223 (in Chinese) [董江涛, 徐艳, 宗晓萍 2006 物理学报 55 3223]

    [7]

    Chen D P, Xing C F, Zhang Z, Zhang C L 2012 Acta Phys. Sin. 61 024202 (in Chinese) [陈大鹏, 刑春飞, 张峥, 张存林 2012 物理学报 61 024202]

    [8]

    Direkoglu C, Dahyot R, Manzke M 2012 Int. J. Comput. Vision 100 170

    [9]

    Sun G Y, Liu Q H, Liu Q, Ji C Y, Li X W 2007 Pattern Recogn. 40 2766

    [10]

    Lopez-Molina C, Bustince H, Fernandez J, Couto P, De Baets B 2010 Pattern Recogn. 43 3730

    [11]

    Lopez-Molina C, Bustince H, Galar M, Fernandez J, De Baets B 2009 Ninth International Conference on Intelligent Systems Design and Applications Pisa, Italy November 30-December 2, 2009 p1347

    [12]

    Wang Z R, Quan Y M 2007 International Symposium on Intelligent Signal Processing and Communication Systems Xiamen, China November 28 - December 1, 2007 p260

    [13]

    Bouda B, Masmoudib L, Aboutajdine D 2008 Signal Process. 88 905

    [14]

    Wu T, Gao Y 2011 ICIC Express Lett. 5 733

    [15]

    Nixon M, Liu X U, Direkoglu C, Hurley D 2011 Comput. J. 54 11

    [16]

    Direkoglu C, Nixon M, Liu X U, Hurley D 2011 Pattern Recogn. Lett. 32 270

    [17]

    Boskovitz V, Guterman H 2002 IEEE T. Fuzzy Syst. 2 247

    [18]

    Pal S K, King R A 1983 IEEE T. Pattern Anal. 1 69

    [19]

    Bezdek J, Chandrasekhar R, Attikouzel Y 1998 IEEE T. Fuzzy Syst. 1 52

    [20]

    Lopez-Molina C, De Baets B, Bustince H 2011 Comput. Vis. Image Und. 11 1571

    [21]

    Li D Y, Liu C Y, Gan W Y 2009 Int. J. Intell. Syst. 24 357

    [22]

    Gan W Y, Li D Y, Wang J M 2006 Acta Electron. Sin. 34 258 (in Chinese) [淦文燕, 李德毅, 王建民 2006 电子学报 34 258]

    [23]

    Li D Y, Du Y 2005 Artificial Intelligence with Uncertainty (Beijing: National Defence Industry Press) p187 (in Chinese) [李德毅, 杜鹢 2005 不确定性人工智能 (北京: 国防工业出版社) 第187页]

    [24]

    Qin K, Xu K, Liu F L, Li D Y 2011 Comput. Math. Appl. 62 2824

    [25]

    Wu T, Qin K 2012 Neurocomputing 97 278

    [26]

    Liu Y, Li D Y, Zhang G W 2009 Acta Electron. Sin. 37 1651 (in Chinese) [刘禹, 李德毅, 张光卫 2009 电子学报 37 1651]

    [27]

    Rosin P L 2001 Pattern Recogn. 34 2083

    [28]

    Wu T, Qin K 2012 Opt. Lasers Eng. 50 131

    [29]

    Baddeley A J 1992 Robust Computer Vision: Quality of Vision Algorithms (Karlsruhe: Wichmann Verlag) p152

  • [1]

    Wu Y Q, Zhang J K 2010 Acta Phys. Sin. 59 5487 (in Chinese) [吴一全, 张金矿 2010 物理学报 59 5487]

    [2]

    Ma J F, Hou K, Bao S L, Chen C 2011 Chin. Phys. B 20 028701

    [3]

    Tang Y G, Di Q Y, Zhao L X, Guan X P, Liu F C 2009 Acta Phys. Sin. 58 9 (in Chinese) [唐英干, 邸秋艳, 赵立兴, 关新平, 刘福才 2009 物理学报 58 9]

    [4]

    Song F J, Jutamulia S, Song J L, Yao S Y, Wang D 2003 Acta Phys. Sin. 52 3055 (in Chinese) [宋菲君, 赵文杰, Jutamulia S, 宋建力, 姚思一, 王栋 2003 物理学报 52 3055]

    [5]

    He S H, Yang S Q, Shi A G, Li T W 2009 Acta Phys. Sin. 58 794 (in Chinese) [何四华, 杨绍清, 石爱国, 李天伟 2009 物理学报 58 794]

    [6]

    Dong J T, Xu Y, Zong X P 2006 Acta Phys. Sin. 55 3223 (in Chinese) [董江涛, 徐艳, 宗晓萍 2006 物理学报 55 3223]

    [7]

    Chen D P, Xing C F, Zhang Z, Zhang C L 2012 Acta Phys. Sin. 61 024202 (in Chinese) [陈大鹏, 刑春飞, 张峥, 张存林 2012 物理学报 61 024202]

    [8]

    Direkoglu C, Dahyot R, Manzke M 2012 Int. J. Comput. Vision 100 170

    [9]

    Sun G Y, Liu Q H, Liu Q, Ji C Y, Li X W 2007 Pattern Recogn. 40 2766

    [10]

    Lopez-Molina C, Bustince H, Fernandez J, Couto P, De Baets B 2010 Pattern Recogn. 43 3730

    [11]

    Lopez-Molina C, Bustince H, Galar M, Fernandez J, De Baets B 2009 Ninth International Conference on Intelligent Systems Design and Applications Pisa, Italy November 30-December 2, 2009 p1347

    [12]

    Wang Z R, Quan Y M 2007 International Symposium on Intelligent Signal Processing and Communication Systems Xiamen, China November 28 - December 1, 2007 p260

    [13]

    Bouda B, Masmoudib L, Aboutajdine D 2008 Signal Process. 88 905

    [14]

    Wu T, Gao Y 2011 ICIC Express Lett. 5 733

    [15]

    Nixon M, Liu X U, Direkoglu C, Hurley D 2011 Comput. J. 54 11

    [16]

    Direkoglu C, Nixon M, Liu X U, Hurley D 2011 Pattern Recogn. Lett. 32 270

    [17]

    Boskovitz V, Guterman H 2002 IEEE T. Fuzzy Syst. 2 247

    [18]

    Pal S K, King R A 1983 IEEE T. Pattern Anal. 1 69

    [19]

    Bezdek J, Chandrasekhar R, Attikouzel Y 1998 IEEE T. Fuzzy Syst. 1 52

    [20]

    Lopez-Molina C, De Baets B, Bustince H 2011 Comput. Vis. Image Und. 11 1571

    [21]

    Li D Y, Liu C Y, Gan W Y 2009 Int. J. Intell. Syst. 24 357

    [22]

    Gan W Y, Li D Y, Wang J M 2006 Acta Electron. Sin. 34 258 (in Chinese) [淦文燕, 李德毅, 王建民 2006 电子学报 34 258]

    [23]

    Li D Y, Du Y 2005 Artificial Intelligence with Uncertainty (Beijing: National Defence Industry Press) p187 (in Chinese) [李德毅, 杜鹢 2005 不确定性人工智能 (北京: 国防工业出版社) 第187页]

    [24]

    Qin K, Xu K, Liu F L, Li D Y 2011 Comput. Math. Appl. 62 2824

    [25]

    Wu T, Qin K 2012 Neurocomputing 97 278

    [26]

    Liu Y, Li D Y, Zhang G W 2009 Acta Electron. Sin. 37 1651 (in Chinese) [刘禹, 李德毅, 张光卫 2009 电子学报 37 1651]

    [27]

    Rosin P L 2001 Pattern Recogn. 34 2083

    [28]

    Wu T, Qin K 2012 Opt. Lasers Eng. 50 131

    [29]

    Baddeley A J 1992 Robust Computer Vision: Quality of Vision Algorithms (Karlsruhe: Wichmann Verlag) p152

  • [1] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测. 物理学报, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [2] 苏新宇, 王丽嘉, 朱艳春. 基于心脏电影磁共振图像的一种新的右心室多图谱分割方法. 物理学报, 2019, 68(19): 190701. doi: 10.7498/aps.68.20190582
    [3] 乔志伟. 总变差约束的数据分离最小图像重建模型及其Chambolle-Pock求解算法. 物理学报, 2018, 67(19): 198701. doi: 10.7498/aps.67.20180839
    [4] 范虹, 韦文瑾, 朱艳春. 基于二维集合经验模式分解的距离正则化水平集磁共振图像分割. 物理学报, 2016, 65(16): 168701. doi: 10.7498/aps.65.168701
    [5] 马振鹤, 窦世丹, 马毓姝, 刘健, 赵玉倩, 刘江红, 吕江涛, 王毅. 基于光学相干层析成像的早期鸡胚心脏径向应变测量. 物理学报, 2016, 65(23): 235202. doi: 10.7498/aps.65.235202
    [6] 韩振中, 陈后金, 李艳凤, 李居朋, 姚畅, 程琳. 基于SPCNN与改进型矢量CV模型的乳腺X射线肿块分割方法. 物理学报, 2014, 63(7): 078703. doi: 10.7498/aps.63.078703
    [7] 金左轮, 韩静, 张毅, 柏连发. 基于纹理显著性的微光图像目标检测. 物理学报, 2014, 63(6): 069501. doi: 10.7498/aps.63.069501
    [8] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [9] 范虹, 朱艳春, 王芳梅, 张旭梅. 多分辨率水平集算法的乳腺MR图像分割. 物理学报, 2014, 63(11): 118701. doi: 10.7498/aps.63.118701
    [10] 张品, 梁艳梅, 常胜江, 范海伦. 基于能量最小化的肾脏计算断层扫描图像分割方法. 物理学报, 2013, 62(20): 208701. doi: 10.7498/aps.62.208701
    [11] 宋长新, 马克, 秦川, 肖鹏. 结合稀疏编码和空间约束的红外图像聚类分割研究. 物理学报, 2013, 62(4): 040702. doi: 10.7498/aps.62.040702
    [12] 肖迪, 谢沂均. 一种结合JPEG压缩编码的彩色图像加密算法. 物理学报, 2013, 62(24): 240508. doi: 10.7498/aps.62.240508
    [13] 吴一全, 张金矿. 二维直方图θ划分最大Shannon熵图像阈值分割. 物理学报, 2010, 59(8): 5487-5495. doi: 10.7498/aps.59.5487
    [14] 范孟豹, 曹丙花, 杨雪锋. 脉冲涡流检测瞬态涡流场的时域解析模型. 物理学报, 2010, 59(11): 7570-7574. doi: 10.7498/aps.59.7570
    [15] 何四华, 杨绍清, 石爱国, 李天伟. 基于图像区域Lyapunov指数的海面舰船目标检测. 物理学报, 2009, 58(2): 794-801. doi: 10.7498/aps.58.794
    [16] 唐英干, 邸秋艳, 赵立兴, 关新平, 刘福才. 基于二维最小Tsallis交叉熵的图像阈值分割方法. 物理学报, 2009, 58(1): 9-15. doi: 10.7498/aps.58.9
    [17] 龚志强, 封国林, 万仕全, 李建平. 基于启发式分割算法检测华北和全球气候变化的特征. 物理学报, 2006, 55(1): 477-484. doi: 10.7498/aps.55.477
    [18] 宗晓萍, 徐 艳, 董江涛. 多信息融合的模糊边缘检测技术. 物理学报, 2006, 55(7): 3223-3228. doi: 10.7498/aps.55.3223
    [19] 封国林, 龚志强, 董文杰, 李建平. 基于启发式分割算法的气候突变检测研究. 物理学报, 2005, 54(11): 5494-5499. doi: 10.7498/aps.54.5494
    [20] 梁艳梅, 翟宏琛, 常胜江, 张思远. 基于最大隶属度原则的彩色图像分割方法. 物理学报, 2003, 52(11): 2655-2659. doi: 10.7498/aps.52.2655
计量
  • 文章访问数:  3403
  • PDF下载量:  494
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-10
  • 修回日期:  2012-10-29
  • 刊出日期:  2013-03-05

不确定性边缘表示与提取的认知物理学方法

  • 1. 湛江师范学院信息科学与技术学院, 湛江 524048
    基金项目: 国家重点基础研究发展计划(批准号: 2012CB719903)和 广东高校优秀青年创新人才培养计划(批准号: 2012LYM-0092) 资助的课题.

摘要: 图像边缘检测是图像处理的一种重要技术, 其中不确定性表示与提取是关键问题之一. 在现有模拟物理学思想的相关方法基础之上, 提出了基于认知物理学的不确定性边缘表示与提取方法. 该方法利用数据场发现图像全局灰度认知, 构建图像灰度值空间到数据场势值空间的映射关系, 从场论的角度建立了可扩展的理论框架、统一了现有相关方法; 另一方面, 构造半升云模型建立云模型确定度的变化幅度与边缘像素表示与提取的内在关联关系, 最终在认知物理学核心理论的支持下实现图像不确定性边缘表示与提取. 所提出的方法时间耗费近似与图像尺寸成线性关系. 定性和定量的实验结果及分析表明, 该方法的分割效果较好, 性能稳定, 具有合理性和有效性.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回