搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅量子点的形状及其弯曲表面效应

黄伟其 周年杰 尹君 苗信建 黄忠梅 陈汉琼 苏琴 刘世荣 秦朝建

引用本文:
Citation:

硅量子点的形状及其弯曲表面效应

黄伟其, 周年杰, 尹君, 苗信建, 黄忠梅, 陈汉琼, 苏琴, 刘世荣, 秦朝建

Shape and curved surface effect on silicon quantum dots

Huang Wei-Qi, Zhou Nian-Jie, Yin Jun, Miao Xin-Jian, Huang Zhong-Mei, Chen Han-Qiong, Su Qin, Liu Shi-Rong, Qin Chao-Jian
PDF
导出引用
  • 硅量子点的弯曲表面引起系统的对称性破缺, 致使某些表面键合在能带的带隙中形成局域电子态.计算结果表明:硅量子点的表面曲率不同形成的表面键合结合能和电子态分布明显不同. 例如, Si–O–Si桥键在曲率较大的表面键合能够在带隙中形成局域能级, 而在硅量子点曲率较小的近平台表面上键合不会形成任何局域态, 但此时的键合结合能较低. 用弯曲表面效应(CS)可以解释较小硅量子点的光致荧光光谱的红移现象. CS效应揭示了纳米物理中又一奇妙的特性. 实验证实, CS效应在带隙中形成的局域能级可以激活硅量子点发光.
    Curviform surface breaks the symmetrical shape of silicon quantum dots on which some bonds can produce localized electronic states in band gap. The calculation results show that the bonding energy and electronic states of silicon quantum dots are different on various curved surfaces, for example, an Si–O–Si bridge bond on curved surface provides the localized levels in band gap and its bonding energy is shallower than that on facet. The red-shifting of PL spectrum on smaller silicon quantum dots can be explained by curved surface effect. Experiments demonstrate that silicon quantum dots are activated for emission due to the localized levels formed in the band gap.
    • 基金项目: 国家自然科学基金(批准号:11264007)资助的课题.
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 11264007).
    [1]

    Sychugov I, Juhasz R, Valenta J, Linnros J 2005 Phys. Rev. Lett. 94 087405

    [2]

    Hirschman K D, Tsybeskov L, Duttagupta S P, Fauchet P M 1996 Nature 384 338

    [3]

    Fauchet P M, Ruan J, Chen H, Pavesi L, Negro L D, Cazzaneli M, Elliman R G, Smith N, Smoc M, Luther-Davies B 2005 Opt. Mater. 27 745

    [4]

    Huang W Q, Jin F, Wang H X, Xu L, Wu K Y, Liu S R, Qin C J 2008 Appl. Phys. Lett. 92 221910

    [5]

    Faraci G, Gibilisco S, Pennisi A R, Franzo G, Rosa S L, Lozzi L 2008 Phys. Rev. B 78 245425

    [6]

    Huang W Q, Lü Q, Wang X Y, Zhang R T, Yu S Q 2011 Acta Phys. Sin. 60 017805 (in Chinese) [黄伟其, 吕泉, 王晓允, 张荣涛, 于示强 2011 物理学报 60 017805]

    [7]

    Wolkin M V, Jorne J, Fauchet P M 1999 Phys. Rev. Lett. 82 197

    [8]

    Hadjisavvas G, Remediakis I N, Kelires P C 2006 Phys. Rev. B 74 165419

    [9]

    Cruz M, Wang C, Beltrán M R, Tageña-Martínez J 1996 Phys. Rev. B 53 3828

    [10]

    Huang W Q, Xu L, Wu K Y 2007 J. Appl. Phys. 102 053517

    [11]

    Huang W Q, Zhang R T, Wang H X, Jin F, Xu L, Qin S J, Wu K Y, Liu S R, Qin C J 2008 Opt. Commun. 281 5229

  • [1]

    Sychugov I, Juhasz R, Valenta J, Linnros J 2005 Phys. Rev. Lett. 94 087405

    [2]

    Hirschman K D, Tsybeskov L, Duttagupta S P, Fauchet P M 1996 Nature 384 338

    [3]

    Fauchet P M, Ruan J, Chen H, Pavesi L, Negro L D, Cazzaneli M, Elliman R G, Smith N, Smoc M, Luther-Davies B 2005 Opt. Mater. 27 745

    [4]

    Huang W Q, Jin F, Wang H X, Xu L, Wu K Y, Liu S R, Qin C J 2008 Appl. Phys. Lett. 92 221910

    [5]

    Faraci G, Gibilisco S, Pennisi A R, Franzo G, Rosa S L, Lozzi L 2008 Phys. Rev. B 78 245425

    [6]

    Huang W Q, Lü Q, Wang X Y, Zhang R T, Yu S Q 2011 Acta Phys. Sin. 60 017805 (in Chinese) [黄伟其, 吕泉, 王晓允, 张荣涛, 于示强 2011 物理学报 60 017805]

    [7]

    Wolkin M V, Jorne J, Fauchet P M 1999 Phys. Rev. Lett. 82 197

    [8]

    Hadjisavvas G, Remediakis I N, Kelires P C 2006 Phys. Rev. B 74 165419

    [9]

    Cruz M, Wang C, Beltrán M R, Tageña-Martínez J 1996 Phys. Rev. B 53 3828

    [10]

    Huang W Q, Xu L, Wu K Y 2007 J. Appl. Phys. 102 053517

    [11]

    Huang W Q, Zhang R T, Wang H X, Jin F, Xu L, Qin S J, Wu K Y, Liu S R, Qin C J 2008 Opt. Commun. 281 5229

计量
  • 文章访问数:  6253
  • PDF下载量:  726
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-02
  • 修回日期:  2012-12-28
  • 刊出日期:  2013-04-05

/

返回文章
返回