搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无边带信息的多输入多输出正交频分复用水声通信图样选择峰均比抑制算法

王巍 乔钢 邢思宇

引用本文:
Citation:

无边带信息的多输入多输出正交频分复用水声通信图样选择峰均比抑制算法

王巍, 乔钢, 邢思宇

A selective mapping peak-to-average power ratio reduction algorithm without side information for underwater acoustic multiple-input multiple-output orthogonal frequency division multiplexing communication

Wang Wei, Qiao Gang, Xing Si-Yu
PDF
导出引用
  • 针对多输入多输出正交频分复用 图样选择 峰均比(peak-to-average-power-ratio PAPR)抑制算法需要传递边带信息的缺点, 提出了一种无边带信息传输的图样选择峰均比抑制算法. 该算法利用不同分布图样的梳状导频携带加扰相位序列选择信息, 结合浅海水声信道的稀疏特性在接收端对加扰图样进行自主区分, 实现了无边带信息的图样选择峰均比抑制.仿真和水池实验结果证实: 无边带信息传输的图样选择峰均比抑制算法可以在不损失PAPR抑制性能的前提下, 准确解算出传输相位序列选择信息、对抗突发噪声、实现无边带信息传输的可靠水声通信.
    To overcome the disadvantage of side information transmission, an improved selective mapping algorithm is proposed for peak-to-average power ratio reduction of multiple-input multiple-output orthogonal frequency division multiplexing communication via underwater acoustic channels. The scrambling patterns are carried by comb pilot with different distributions. And taking advantage of neritic channel sparse characteristics, the scrambling patterns can be distinguished without side information. The results of experiment performed with numerical simulation and tank demonstrate that the proposed algorithm can distinguish between scrambling patterns without degrading the performance, abate the burst noise effect, and significantly enhance the quality of the system.
    • 基金项目: 国家高技术研究发展计划(批准号:2009AA093601-2);国防基础研究项目(批准号:B2420110007)和国家自然基金(批准号:11274079)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA093601-2), the National Defense Basic Research of China (Grant No. B2420110007), and the National Natural Science Foundation of China (Grant No. 11274079).
    [1]

    Li L S, Huang J, Zhou S L 2009 IEEE J. Oceanic Engin. 24 634

    [2]

    Bauml R W, Fische R F H, Huber J B 1996 Elect. Lett. 32 2056

    [3]

    Liu C, Huang L Y, Zhu W J 2010 Micro Comput. Appl. 29 69 (in Chinese) [刘臣, 黄丽亚, 朱文俊 2010微型机与应用 29 69]

    [4]

    Muller S H, Huber J B 1997 Elect. Lett. 33 368

    [5]

    Joo H S, No J S, Shin D J 2010 Conference on Information and Communication Technology Convergence Jeju, Korea, November 17-19, 2010 p272

    [6]

    Du Z, Beaulieu C, Zhu J K 2009 IEEE Trans. Vehicul. Technol. 58 1170

    [7]

    Guan L L, Jiang T, Qu D M, Zhou Y 2010 IEEE Signal Process. Lett. 17 883

    [8]

    Eom S S, Nam H, Ko Y C 2012 IEEE Trans. Signal Process. 60 3657

    [9]

    Song A J, Badiey M, McDonald V K 2008 OCEANS 2008 Quebec City, Canada, September 15-18, 2008 p1

    [10]

    Subramaniam L V, Rajan B S, Bahl R 1998 Proceedings of the 1998 Oceans Conference Part 1 Nice, September 28-October 1, 1998 p800

    [11]

    Feng B C, Fang S, Zhang L G, Li H, Tong J J, Li W Q 2013 Acta Phys. Sin. 62 112901 [冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜 2013 物理学报 62 112901]

    [12]

    Alamouti S M 1998 IEEE J. Select. Areas Commun. 16 1451

    [13]

    Yin C C, Luo T, Le G X 2004 Multi-carrier Broadband Wireless Communication Technology (Beijing: Beijing University of Posts and Telecommunications Press) p99 (in Chinese) [尹长川, 罗涛, 乐光新 2004多载波宽带无线通信技术(北京: 北京邮电大学出版社)第99页]

    [14]

    Gan J C, Xiao X X 2003 Acta Phys. Sin. 52 1085 [甘建超, 肖先锡 2003 物理学报 52 1085]

    [15]

    Roy S, Duman T M, McDonald V, Proakis J G 2007 IEEE J. Oceanic Engin. 32 663

    [16]

    Figueiredo M A T, Nowak R D, Wright S J 2008 IEEE J. Selcet. Topics Signal Process. 1 586

    [17]

    Ran M H, Huang J G, Fu H J 2011 Syst. Engin. Electron. 33 1157

    [18]

    He C B, Huang J G, Yan Z H, Su W 2007 J. Northwestern Polytech. Univ. 25 396 (in Chinese) [何成兵, 黄建国, 阎振华, 苏蒍 2007 西北工业大学学报 25 396]

    [19]

    Han Y F 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [韩雅菲 2011 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [20]

    Tsakalides P, Nikias C 1995 IEEE Trans. Signal Process. 43 2700

  • [1]

    Li L S, Huang J, Zhou S L 2009 IEEE J. Oceanic Engin. 24 634

    [2]

    Bauml R W, Fische R F H, Huber J B 1996 Elect. Lett. 32 2056

    [3]

    Liu C, Huang L Y, Zhu W J 2010 Micro Comput. Appl. 29 69 (in Chinese) [刘臣, 黄丽亚, 朱文俊 2010微型机与应用 29 69]

    [4]

    Muller S H, Huber J B 1997 Elect. Lett. 33 368

    [5]

    Joo H S, No J S, Shin D J 2010 Conference on Information and Communication Technology Convergence Jeju, Korea, November 17-19, 2010 p272

    [6]

    Du Z, Beaulieu C, Zhu J K 2009 IEEE Trans. Vehicul. Technol. 58 1170

    [7]

    Guan L L, Jiang T, Qu D M, Zhou Y 2010 IEEE Signal Process. Lett. 17 883

    [8]

    Eom S S, Nam H, Ko Y C 2012 IEEE Trans. Signal Process. 60 3657

    [9]

    Song A J, Badiey M, McDonald V K 2008 OCEANS 2008 Quebec City, Canada, September 15-18, 2008 p1

    [10]

    Subramaniam L V, Rajan B S, Bahl R 1998 Proceedings of the 1998 Oceans Conference Part 1 Nice, September 28-October 1, 1998 p800

    [11]

    Feng B C, Fang S, Zhang L G, Li H, Tong J J, Li W Q 2013 Acta Phys. Sin. 62 112901 [冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜 2013 物理学报 62 112901]

    [12]

    Alamouti S M 1998 IEEE J. Select. Areas Commun. 16 1451

    [13]

    Yin C C, Luo T, Le G X 2004 Multi-carrier Broadband Wireless Communication Technology (Beijing: Beijing University of Posts and Telecommunications Press) p99 (in Chinese) [尹长川, 罗涛, 乐光新 2004多载波宽带无线通信技术(北京: 北京邮电大学出版社)第99页]

    [14]

    Gan J C, Xiao X X 2003 Acta Phys. Sin. 52 1085 [甘建超, 肖先锡 2003 物理学报 52 1085]

    [15]

    Roy S, Duman T M, McDonald V, Proakis J G 2007 IEEE J. Oceanic Engin. 32 663

    [16]

    Figueiredo M A T, Nowak R D, Wright S J 2008 IEEE J. Selcet. Topics Signal Process. 1 586

    [17]

    Ran M H, Huang J G, Fu H J 2011 Syst. Engin. Electron. 33 1157

    [18]

    He C B, Huang J G, Yan Z H, Su W 2007 J. Northwestern Polytech. Univ. 25 396 (in Chinese) [何成兵, 黄建国, 阎振华, 苏蒍 2007 西北工业大学学报 25 396]

    [19]

    Han Y F 2011 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [韩雅菲 2011 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [20]

    Tsakalides P, Nikias C 1995 IEEE Trans. Signal Process. 43 2700

  • [1] 林书庆, 江宁, 王超, 胡少华, 李桂兰, 薛琛鹏, 刘雨倩, 邱昆. 基于动态混沌映射的三维加密正交频分复用无源光网络. 物理学报, 2018, 67(2): 028401. doi: 10.7498/aps.67.20171246
    [2] 杜鹏宇, 殷敬伟, 周焕玲, 郭龙祥. 基于时反镜能量检测法的循环移位扩频水声通信. 物理学报, 2016, 65(1): 014302. doi: 10.7498/aps.65.014302
    [3] 殷敬伟, 杜鹏宇, 张晓, 朱广平. 基于单矢量差分能量检测器的扩频水声通信. 物理学报, 2016, 65(4): 044302. doi: 10.7498/aps.65.044302
    [4] 陈雪梅, 张静, 易兴文, 曾登科, 杨合明, 邱昆. 基于数字相干叠加的相干光正交频分复用系统中光纤非线性容忍性研究. 物理学报, 2015, 64(14): 144203. doi: 10.7498/aps.64.144203
    [5] 巴斌, 刘国春, 李韬, 林禹丞, 王瑜. 基于哈达玛积扩展子空间的到达时间和波达方向联合估计. 物理学报, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403
    [6] 张歆, 邢晓飞, 张小蓟, 周燕群, 赵顺德, 李俊威. 基于水声信道传播时延排序的分层空时信号检测. 物理学报, 2015, 64(16): 164302. doi: 10.7498/aps.64.164302
    [7] 马璐, 刘凇佐, 乔钢. 水声正交频分多址上行通信稀疏信道估计与导频优化. 物理学报, 2015, 64(15): 154304. doi: 10.7498/aps.64.154304
    [8] 尹艳玲, 乔钢, 刘凇佐, 周锋. 基于基追踪去噪的水声正交频分复用稀疏信道估计. 物理学报, 2015, 64(6): 064301. doi: 10.7498/aps.64.064301
    [9] 张歆, 张小蓟, 邢晓飞, 姜丽伟. 单载波频域均衡中的水声信道频域响应与噪声估计. 物理学报, 2014, 63(19): 194304. doi: 10.7498/aps.63.194304
    [10] 王逸林, 马世龙, 梁国龙, 范展. 基于多径分集的啁啾扩频正交频分复用水声通信系统. 物理学报, 2014, 63(4): 044302. doi: 10.7498/aps.63.044302
    [11] 韩笑, 殷敬伟, 郭龙祥, 张晓. 基于差分Pattern时延差编码和海豚whistles信号的仿生水声通信技术研究. 物理学报, 2013, 62(22): 224301. doi: 10.7498/aps.62.224301
    [12] 尹艳玲, 周锋, 乔钢, 刘凇佐. 正交多载波M元循环移位键控扩频水声通信. 物理学报, 2013, 62(22): 224302. doi: 10.7498/aps.62.224302
    [13] 何成兵, 黄建国, 孟庆微, 张群飞, 史文涛. 基于扩频码的单载波迭代频域均衡水声通信. 物理学报, 2013, 62(23): 234301. doi: 10.7498/aps.62.234301
    [14] 刘凇佐, 乔钢, 尹艳玲. 一种利用海豚叫声的仿生水声通信方法. 物理学报, 2013, 62(14): 144303. doi: 10.7498/aps.62.144303
    [15] 于洋, 周锋, 乔钢. 正交码元移位键控扩频水声通信. 物理学报, 2013, 62(6): 064302. doi: 10.7498/aps.62.064302
    [16] 殷敬伟, 杨森, 杜鹏宇, 余赟, 陈阳. 基于单矢量有源平均声强器的码分多址水声通信. 物理学报, 2012, 61(6): 064302. doi: 10.7498/aps.61.064302
    [17] 于洋, 周锋, 乔钢. M元码元移位键控扩频水声通信. 物理学报, 2012, 61(23): 234301. doi: 10.7498/aps.61.234301
    [18] 何成兵, 黄建国, 韩晶, 张群飞. 循环移位扩频水声通信. 物理学报, 2009, 58(12): 8379-8385. doi: 10.7498/aps.58.8379
    [19] 殷敬伟, 惠俊英, 郭龙祥. 点对点移动水声通信技术研究. 物理学报, 2008, 57(3): 1753-1758. doi: 10.7498/aps.57.1753
    [20] 殷敬伟, 惠俊英, 王逸林, 惠 娟. M元混沌扩频多通道Pattern时延差编码水声通信. 物理学报, 2007, 56(10): 5915-5921. doi: 10.7498/aps.56.5915
计量
  • 文章访问数:  2604
  • PDF下载量:  493
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-18
  • 修回日期:  2013-05-29
  • 刊出日期:  2013-09-05

无边带信息的多输入多输出正交频分复用水声通信图样选择峰均比抑制算法

  • 1. 哈尔滨工程大学, 水声技术重点实验室, 哈尔滨 150001
    基金项目: 国家高技术研究发展计划(批准号:2009AA093601-2);国防基础研究项目(批准号:B2420110007)和国家自然基金(批准号:11274079)资助的课题.

摘要: 针对多输入多输出正交频分复用 图样选择 峰均比(peak-to-average-power-ratio PAPR)抑制算法需要传递边带信息的缺点, 提出了一种无边带信息传输的图样选择峰均比抑制算法. 该算法利用不同分布图样的梳状导频携带加扰相位序列选择信息, 结合浅海水声信道的稀疏特性在接收端对加扰图样进行自主区分, 实现了无边带信息的图样选择峰均比抑制.仿真和水池实验结果证实: 无边带信息传输的图样选择峰均比抑制算法可以在不损失PAPR抑制性能的前提下, 准确解算出传输相位序列选择信息、对抗突发噪声、实现无边带信息传输的可靠水声通信.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回