搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉积温度对钛硅共掺杂类金刚石薄膜生长、结构和力学性能的影响

姜金龙 黄浩 王琼 王善民 魏智强 杨华 郝俊英

引用本文:
Citation:

沉积温度对钛硅共掺杂类金刚石薄膜生长、结构和力学性能的影响

姜金龙, 黄浩, 王琼, 王善民, 魏智强, 杨华, 郝俊英

Effect of deposition temperature on growth, structure and mechanical properties of diamond-like carbon films co-doped by titanium and silicon

Jiang Jin-Long, Huang Hao, Wang Qiong, Wang Shan-Min, Wei Zhi-Qiang, Yang Hua, Hao Jun-Ying
PDF
导出引用
  • 采用中频磁控溅射Ti80Si20复合靶在单晶硅表面制备了共掺杂的类金刚石薄膜. 研究了沉积温度对薄膜生长速率、化学成分、结构、表面性质和力学性能的影响. 结果表明:随沉积温度升高,薄膜生长速率降低,薄膜Ti和Si原子浓度增加,C原子浓度降低;在高温下沉积的薄膜具有低sp3C 含量、低表面接触角、低内应力和高的硬度与弹性模量. 基于亚表层注入生长模型分析了沉积温度对薄膜生长和键合结构的影响,从薄膜生长机制和微观结构解释了表面性质和力学性能的变化.
    Titanium and silicon co-doped diamond-like carbon films are deposited on Si substrates by middle-frequency magnetron sputtering Ti80Si20 composite target. The influences of deposition temperature on the growth rate, chemical composition, structure, surface and mechanical properties of the film are investigated. The results show that the growth rate of the film decreases as substrate temperature increases. With the increasing of substrate temperature, Ti and Si atom content values in the film increase, while C atom content value decreases. At high temperatures, the film has low sp3C fraction, surface contact angle, compressive stress, and high hardness, and elastic modulus. The influences of deposition temperature on the growth and bonding structure of the film are analyzed in view of the subplantation growth model. The changes in surface and mechanical properties are correlated with the growth mechanism and microstructures of the film.
    • 基金项目: 国家自然科学基金(批准号:51105186)、甘肃省自然科学基金(批准号:1014RJZA007)和兰州理工大学优秀青年基金(批准号:1010ZCX010)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51105186), the Natural Science Foundation of Gansu Province, China (Grant No. 1014RJZA007), and Excellent Young Teachers Program of Lanzhou University of Technology, China (Grant No. 1010ZCX010).
    [1]

    Kao W H, Su Y L, Yao S H, Huang H C 2010 Surf. Coat. Tech. 204 1277

    [2]

    Wang Y Y, Li Y A, Xu J S, Gu G R 2012 Chin. Phys. B 21 087902

    [3]

    Wang C B, Shi J, Geng Z R, Zhang J Y 2012 Chin. Phys. Lett. 29 056201

    [4]

    Zhao D C, Ren N, Ma Z J, Qiu J W, Xiao G J, Wu S H 2008 Acta Phys. Sin. 57 1935 (in Chinese) [赵栋才, 任妮, 马占吉, 邱家稳, 肖更竭, 武生虎 2008 物理学报 57 1935]

    [5]

    Zhao F, Li H X, Ji L, Wang Y J, Zhou H D, Chen J M 2010 Surf. Coat. Tech. 19 342

    [6]

    Jiang J, Hao J, Pang X, Wang P, Liu W 2010 Diamond Relat. Mater. 19 1172

    [7]

    Liu X, Yang J, Hao J, Zheng J, Gong Q, Liu W 2012 Adv. Mater. 24 4614

    [8]

    Y X, Wang C B, L Y, Yu D Y 2006 Diamond Relat. Mater. 15 1223

    [9]

    Pei Y T, Chen C Q, Shaha K P, De Hosson J T M, Bradley J W, Voronin S A, Čada M 2008 Acta Mater. 56 696

    [10]

    Sattel S, Robertson J, Ehrhardt H 1997 J. Appl. Phys. 82 4566

    [11]

    Robertson J 2002 Mater. Sci. Eng. R 37 129

    [12]

    Jiang J, Hao J, Wang P, Liu W 2010 J. Appl. Phys. 108 033510

    [13]

    Li G, Xia L F 2001 Thin Solid Films 396 16

    [14]

    Lewin E, Persson P O Å, Lattemann M, Stber M, Gorgoi M, Sandell A, Ziebert C, Schäfers F, Braun W, Halbritter J, Ulrich S, Eberhardt W, Hultman L, Siegbahn H, Svensson S, Jansson U 2008 Surf. Coat. Technol. 202 3563

    [15]

    Mei X X, Liu Z M, Ma T C 2003 Chin. J. Vacuum Sci. Technol. 23 226 (in Chinese) [梅显秀, 刘振民, 马腾才 2003 真空科学与技术 23 226]

    [16]

    Lifshitz Y, Lempert G D, Grossman E, Avigal I, Uzan-Saguy C, Kalish R, Kulik J, Marton D, Rabalais J W 1995 Diamond Relat. Mater. 4 318

    [17]

    Chowdhury S, Laugier M T, Rahman I Z 2004 Thin Solid Films 447–448 174

    [18]

    Chu P K, Li L 2006 Mater. Chem. Phys. 96 253

    [19]

    Varma A, Palshin V, Meletis E I 2001 Surf. Coat. Tech. 148 305

    [20]

    Rybachuk M, Bell J M 2007 Thin Solid Films 515 7855

    [21]

    Paul R, Das S N, Dalui S Gayen R N, Roy R K, Bhar R, Pal A K 2008 J. Phys. D: Appl. Phys. 41 055309

    [22]

    Wang P, Wang X, Xu T, Liu W, Zhang J 2007 Thin Solid Films 515 6899

    [23]

    Ban M, Hasegawa T 2002 Surf. Coat. Tech. 162 1

    [24]

    Wang P 2008 Ph. D. Dissertation (Lanzhou: Lanzhou Institute of Chemical Physics) (in Chinese) [王鹏 2008 博士学位论文 (兰州: 兰州化学物理研究所)]

    [25]

    Forsich C, Heim D, Mueller T 2008 Surf. Coat. Tech. 203 521

    [26]

    Wu W D, Wang F, Li J, Li S Y, Cao L H, Ge F F, Ju X, Tang Y J 2008 High Power Laser Particle Beams 20 769 (in Chinese) [吴卫东, 王锋, 李俊, 李盛印, 曹林洪, 葛芳芳, 巨新, 唐永建 2008 强激光与粒子束 20 769]

    [27]

    Chowdhury S, Laugier M T, Rahman I Z 2004 Thin Solid Films 2004 468 149

    [28]

    Abbas G A, Papakonstantinou P, McLaughlin J A, Weijers-Dall T D M, Elliman R G, Filik J 2005 J. Appl. Phys. 98 103505

  • [1]

    Kao W H, Su Y L, Yao S H, Huang H C 2010 Surf. Coat. Tech. 204 1277

    [2]

    Wang Y Y, Li Y A, Xu J S, Gu G R 2012 Chin. Phys. B 21 087902

    [3]

    Wang C B, Shi J, Geng Z R, Zhang J Y 2012 Chin. Phys. Lett. 29 056201

    [4]

    Zhao D C, Ren N, Ma Z J, Qiu J W, Xiao G J, Wu S H 2008 Acta Phys. Sin. 57 1935 (in Chinese) [赵栋才, 任妮, 马占吉, 邱家稳, 肖更竭, 武生虎 2008 物理学报 57 1935]

    [5]

    Zhao F, Li H X, Ji L, Wang Y J, Zhou H D, Chen J M 2010 Surf. Coat. Tech. 19 342

    [6]

    Jiang J, Hao J, Pang X, Wang P, Liu W 2010 Diamond Relat. Mater. 19 1172

    [7]

    Liu X, Yang J, Hao J, Zheng J, Gong Q, Liu W 2012 Adv. Mater. 24 4614

    [8]

    Y X, Wang C B, L Y, Yu D Y 2006 Diamond Relat. Mater. 15 1223

    [9]

    Pei Y T, Chen C Q, Shaha K P, De Hosson J T M, Bradley J W, Voronin S A, Čada M 2008 Acta Mater. 56 696

    [10]

    Sattel S, Robertson J, Ehrhardt H 1997 J. Appl. Phys. 82 4566

    [11]

    Robertson J 2002 Mater. Sci. Eng. R 37 129

    [12]

    Jiang J, Hao J, Wang P, Liu W 2010 J. Appl. Phys. 108 033510

    [13]

    Li G, Xia L F 2001 Thin Solid Films 396 16

    [14]

    Lewin E, Persson P O Å, Lattemann M, Stber M, Gorgoi M, Sandell A, Ziebert C, Schäfers F, Braun W, Halbritter J, Ulrich S, Eberhardt W, Hultman L, Siegbahn H, Svensson S, Jansson U 2008 Surf. Coat. Technol. 202 3563

    [15]

    Mei X X, Liu Z M, Ma T C 2003 Chin. J. Vacuum Sci. Technol. 23 226 (in Chinese) [梅显秀, 刘振民, 马腾才 2003 真空科学与技术 23 226]

    [16]

    Lifshitz Y, Lempert G D, Grossman E, Avigal I, Uzan-Saguy C, Kalish R, Kulik J, Marton D, Rabalais J W 1995 Diamond Relat. Mater. 4 318

    [17]

    Chowdhury S, Laugier M T, Rahman I Z 2004 Thin Solid Films 447–448 174

    [18]

    Chu P K, Li L 2006 Mater. Chem. Phys. 96 253

    [19]

    Varma A, Palshin V, Meletis E I 2001 Surf. Coat. Tech. 148 305

    [20]

    Rybachuk M, Bell J M 2007 Thin Solid Films 515 7855

    [21]

    Paul R, Das S N, Dalui S Gayen R N, Roy R K, Bhar R, Pal A K 2008 J. Phys. D: Appl. Phys. 41 055309

    [22]

    Wang P, Wang X, Xu T, Liu W, Zhang J 2007 Thin Solid Films 515 6899

    [23]

    Ban M, Hasegawa T 2002 Surf. Coat. Tech. 162 1

    [24]

    Wang P 2008 Ph. D. Dissertation (Lanzhou: Lanzhou Institute of Chemical Physics) (in Chinese) [王鹏 2008 博士学位论文 (兰州: 兰州化学物理研究所)]

    [25]

    Forsich C, Heim D, Mueller T 2008 Surf. Coat. Tech. 203 521

    [26]

    Wu W D, Wang F, Li J, Li S Y, Cao L H, Ge F F, Ju X, Tang Y J 2008 High Power Laser Particle Beams 20 769 (in Chinese) [吴卫东, 王锋, 李俊, 李盛印, 曹林洪, 葛芳芳, 巨新, 唐永建 2008 强激光与粒子束 20 769]

    [27]

    Chowdhury S, Laugier M T, Rahman I Z 2004 Thin Solid Films 2004 468 149

    [28]

    Abbas G A, Papakonstantinou P, McLaughlin J A, Weijers-Dall T D M, Elliman R G, Filik J 2005 J. Appl. Phys. 98 103505

  • [1] 艾立强, 张相雄, 陈民, 熊大曦. 类金刚石薄膜在硅基底上的沉积及其热导率. 物理学报, 2016, 65(9): 096501. doi: 10.7498/aps.65.096501
    [2] 谭再上, 吴小蒙, 范仲勇, 丁士进. 热退火对等离子体增强化学气相沉积SiCOH薄膜结构与性能的影响. 物理学报, 2015, 64(10): 107701. doi: 10.7498/aps.64.107701
    [3] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [4] 于天燕, 秦杨, 刘定权. 沉积温度对硫化锌(ZnS)薄膜的结晶和光学特性影响研究. 物理学报, 2013, 62(21): 214211. doi: 10.7498/aps.62.214211
    [5] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟. 物理学报, 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [6] 程亮, 甘章华, 刘威, 赵兴中. (Nb, N)共掺杂锐钛矿电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(23): 237107. doi: 10.7498/aps.61.237107
    [7] 张培增, 李瑞山, 谢二庆, 杨华, 王璇, 王涛, 冯有才. 电化学方法制备ZnO纳米颗粒掺杂类金刚石薄膜及其场发射性能研究. 物理学报, 2012, 61(8): 088101. doi: 10.7498/aps.61.088101
    [8] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟. 物理学报, 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [9] 李红凯, 林国强, 董闯. 脉冲偏压电弧离子镀C-N-V薄膜的成分、结构与性能. 物理学报, 2010, 59(6): 4296-4302. doi: 10.7498/aps.59.4296
    [10] 刘强, 程新路, 范勇恒, 杨向东. Al和N共掺p型Zn1-xMgxO电子结构的第一性原理计算. 物理学报, 2009, 58(4): 2684-2691. doi: 10.7498/aps.58.2684
    [11] 杜杰, 叶超, 俞笑竹, 张海燕, 宁兆元. CHx掺杂SiCOH 低介电常数薄膜的物性热稳定性分析. 物理学报, 2009, 58(1): 575-579. doi: 10.7498/aps.58.575
    [12] 仲政祥, 郑家贵, 钟永强, 杨帆, 冯良桓, 蔡伟, 蔡亚平, 张静全, 黎兵, 雷智, 李卫, 武莉莉. 沉积条件对ZnTe/ZnTe:Cu薄膜结构及CdTe电池性能的影响. 物理学报, 2009, 58(7): 4920-4924. doi: 10.7498/aps.58.4920
    [13] 开花, 李运超, 郭德成, 李双, 李之杰. 斜入射离子束辅助沉积对类金刚石薄膜结构影响的分子动力学模拟. 物理学报, 2009, 58(7): 4888-4894. doi: 10.7498/aps.58.4888
    [14] 尚淑珍, 邵建达, 范正修, 赵祖欣. 热舟蒸发LaF3薄膜的紫外性能研究. 物理学报, 2008, 57(3): 1941-1945. doi: 10.7498/aps.57.1941
    [15] 李荣斌. 硼/氮原子共注入金刚石的原子级研究. 物理学报, 2007, 56(1): 395-399. doi: 10.7498/aps.56.395
    [16] 李红轩, 徐 洮, 陈建敏, 周惠娣, 刘惠文. 射频功率对类金刚石薄膜结构和性能的影响. 物理学报, 2005, 54(4): 1885-1889. doi: 10.7498/aps.54.1885
    [17] 叶 凡, 谢二庆, 李瑞山, 林洪峰, 张 军, 贺德衍. 类金刚石和碳氮薄膜的电化学沉积及其场发射性能研究. 物理学报, 2005, 54(8): 3935-3939. doi: 10.7498/aps.54.3935
    [18] 杨武保, 王久丽, 张谷令, 范松华, 刘赤子, 杨思泽. 丙酮环境下ECR微波等离子体辅助化学气相沉积类金刚石薄膜研究. 物理学报, 2004, 53(9): 3099-3103. doi: 10.7498/aps.53.3099
    [19] 梅显秀, 徐军, 马腾才. 利用强流脉冲离子束技术在室温下沉积类金刚石薄膜研究. 物理学报, 2002, 51(8): 1875-1880. doi: 10.7498/aps.51.1875
    [20] 郭栋, 蔡锴, 李龙土, 桂治轮. 电解有机溶液法在Si表面制备类金刚石薄膜及退火对其结构的影响. 物理学报, 2001, 50(12): 2413-2417. doi: 10.7498/aps.50.2413
计量
  • 文章访问数:  3158
  • PDF下载量:  810
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-22
  • 修回日期:  2013-10-14
  • 刊出日期:  2014-01-05

沉积温度对钛硅共掺杂类金刚石薄膜生长、结构和力学性能的影响

  • 1. 兰州理工大学应用物理系, 兰州 730050;
  • 2. 中国科学院兰州化学物理研究所, 固体润滑国家重点实验室, 兰州 730000
    基金项目: 国家自然科学基金(批准号:51105186)、甘肃省自然科学基金(批准号:1014RJZA007)和兰州理工大学优秀青年基金(批准号:1010ZCX010)资助的课题.

摘要: 采用中频磁控溅射Ti80Si20复合靶在单晶硅表面制备了共掺杂的类金刚石薄膜. 研究了沉积温度对薄膜生长速率、化学成分、结构、表面性质和力学性能的影响. 结果表明:随沉积温度升高,薄膜生长速率降低,薄膜Ti和Si原子浓度增加,C原子浓度降低;在高温下沉积的薄膜具有低sp3C 含量、低表面接触角、低内应力和高的硬度与弹性模量. 基于亚表层注入生长模型分析了沉积温度对薄膜生长和键合结构的影响,从薄膜生长机制和微观结构解释了表面性质和力学性能的变化.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回