搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分形理论的飞机雷击初始附着点的数值模拟

孙柯岩 赵小莹 张功磊 臧洪明

引用本文:
Citation:

基于分形理论的飞机雷击初始附着点的数值模拟

孙柯岩, 赵小莹, 张功磊, 臧洪明

Numerical simulations of the lightning attachment points on airplane based on the fractal theory

Sun Ke-Yan, Zhao Xiao-Ying, Zhang Gong-Lei, Zang Hong-Ming
PDF
导出引用
  • 飞机雷击附着点的确定能够为飞机防雷设计提供依据,是飞机雷击区域划分和飞机各部件进行雷电试验鉴定的先决条件. 本文提出了一种基于分形理论的飞机雷击初始附着点数值模拟的新方法. 该方法首先依据标准SAE-ARP5416中有关飞机雷击附着点试验的规定,确定放电间隙、雷电起始坐标、飞机姿态和放电次数等参数,然后根据分形理论,使用电介质击穿模型模拟符合自然界雷电物理机理和几何特征的雷电先导分形发展过程,同时考虑飞机自身触发双向先导的情况,最终得到飞机的雷击附着点分布. 通过本文方法仿真模拟得到飞机F-4雷击附着点的分布概率,并分别与该飞机飞行实验和实验室高压放电实验测试得到的真实雷击附着点的概率分布情况比较,结果基本吻合,验证了该方法的有效性. 研究结果为飞机雷击附着点仿真模拟提供了一个有潜力的方法,可作为飞机防雷设计和今后开展相关研究工作的基础.
    Determination of the aircraft lightning attachment points which can provide the basis for the design of aircraft lightning protection, is a prerequisite for the division of lightning strike zones and the lightning test of aircraft components. In this paper, a novel numerical simulation method based on fractal theory is presented to simulate lightning attachment points on airplane. Firstly, the discharge gap distance, lightning starting coordinates, aircraft attitudes, discharge times and other parameters are determined according to the relevant provisions about aircraft lightning attachment point test in standard SAE-ARP5416. Then, according to the fractal theory, the dielectric breakdown model is used to simulate the fractal growth of the lightning leaders, which accords with physical mechanisms and geometric characteristics of nature lightning. Finally, considering the case where the aircraft itself triggers the bi-directional leader, we obtain the distribution of aircraft lightning attachment points. Because the probability distribution of lightning attachment points on aircraft F-4 obtained through the simulating is almost in line with those obtained through actual aircraft flight test and laboratory test, the proposed method is verified. The proposed method provides a potential way of simulating the lightning attachment points on aircraft. And this method can be used as the foundation of the aircraft lightning protection design and future related research work.
    • 基金项目: 国家自然科学基金(批准号:61001002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61001002).
    [1]

    Fisher B, Taeuber R, Crouch K 1988 AIAA 26th Aerospace Sciences Meeting Reno, USA, January 11–14, 1988

    [2]

    Jones C, Rowse D, Odam G 2001 Int. Conf. on Lightning and Static Electricity Seattle, USA, Septemder 10–14, 2001

    [3]

    Fisher B D, Brown P W, Plumer J A 1986 Proceedings of 11th International Aero space and Ground Conference on Lightning and Static Electricity Dayton, Ohio, USA, June 24–26, 1986

    [4]

    Stahmann J R 1968 Proceedings of Lightning and Static Electricity Conference Miami, USA, December 3–5, 1968, p135

    [5]

    MIL-STD-464A 2002 Electromagnetic Environment Effects Requirements for Systems (USA: Department of Defense Interface Standard)

    [6]

    HB6129 1987 Aircraft Lightning Protection Requirements and Test Methods (Beijing: Ministry of Ariation Industry of the PRC) (in Chinese) [HB6129 1987 飞机雷电防护要求及试验方法 (北京: 中华人民共和国航空工业部)]

    [7]

    GJB2639 1996 Military Aircraft Lightning Protection (Beijing: The Commission of Science, Technology and Industry for Natiand Defense of the PRC) (in Chinese) [GJB2639 1996 军用飞机雷电防护(北京: 中华人民共和国国防科学技术工业委员会)]

    [8]

    SAE-ARP5416 2005 Aircraft Lighting Test Methods (USA: Society of Automotive Engineers International)

    [9]

    Jones C C R 1989 International Aerospace and Ground Conference on Lightning and Statis Electricity Bath, UK, September 25–28, 1989

    [10]

    Lalande P, Bondiou-Clergerie A, Laroche P 1999 Int. Conf. on Lightning and Static Electricity Toulouse, France, June 22–24, 1999 p249

    [11]

    Song S, Gao C, Guo Y C, Yang Q, Zhou B H 2011 Mechanic Automation and Control Engineering (MACE) 2011 Second International Conference on. IEEE, Imer Mongolia, China, July 15–17, 2011 p4428

    [12]

    Zhao Y L, Liu G B, Yu Z Y 2012 Journal of Microwaves 28 39 (in Chinese) [赵玉龙, 刘光斌, 余志勇 2012 微波学报 28 39]

    [13]

    Wang C X, Qie X S, Jiang R B, Yang J 2012 Acta Phys. Sin. 61 039203 (in Chinese) [王彩霞, 郄秀书, 蒋如斌, 杨静 2012 物理学报 61 039203]

    [14]

    Feng G L, Qie X S, Zhao Y, Kong X Z, Zhang G S, Zhang T, Yang J, Zhang Q L, Wang D F 2009 Acta Phys. Sin. 58 6616 (in Chinese) [冯桂力, 郄秀书, 赵阳, 孔祥贞, 张广庶, 张彤, 杨静, 张其林, 王东方 2009 物理学报 58 6616]

    [15]

    Wang C W, Liu X S, Zhang Y J, Xiao Q F 2000 Physics 29 536 (in Chinese) [王才伟, 刘欣生, 张义军, 肖庆复 2000 物理 29 536]

    [16]

    Zhang Z, Lu X, Liang W X, Hao Z Q, Zhou M L, Wang Z H, Zhang J 2009 Chin. Phys. B 18 1136

    [17]

    Petrov N I, Petrova G N, D’Alessandro F 2003 IEEE Trans. Dielectr. Electr. Insulat. 10 641

    [18]

    Fu J, Sima W X, Li J B, Yang Q, Sun C X 2009 High Voltage Engineering 35 1274 (in Chinese) [伏进, 司马文霞, 李建标, 杨庆, 孙才新 2009 高电压技术 35 1274]

    [19]

    He J L, Dong L, Zhang X W, Zeng R 2010 High Voltage Engineering 36 1333 (in Chinese) [何金良, 董林, 张薛巍, 曾嵘 2010 高电压技术 36 1333]

    [20]

    He J L, Zhang X W, Dong L, Zeng R, Liu Z H 2009 Sci. China. E: Tech. 39 1818 (in Chinese) [何金良, 张薛巍, 董林, 曾嵘, 刘泽洪 2009 中国科学 E辑: 技术科学 39 1818]

    [21]

    Huo Y L, Zhang G S, L S H, Yuan P 2013 Acta Phys. Sin. 62 059201 (in Chinese) [火元莲, 张广庶, 吕世华, 袁萍 2013 物理学报 62 059201]

    [22]

    Chifford D W 1975 Proceedings of Lightning and Static Electricity Conference Culham, England, April 14–18, 1975

    [23]

    Wen H, Wang H 2011 High Voltage Apparatus 47 104 (in Chinese) [温浩, 王宏 2011 高压电器 47 104]

    [24]

    Niemeyer L, Pietronero L, Wisemann H J 1984 Phys. Rev. Lett. 52 1033

    [25]

    Wiesmann H J, Zeller H R 1986 J. Appl. Phys. 60 1770

    [26]

    Wan H J, Wei G H, Chen Y Z, Chen Q 2012 J. Hebei Normal Univ. (Natural Science Edition) 36 263 (in Chinese) [万浩江, 魏光辉, 陈亚洲, 陈强 2012 河北师范大学学报 (自然科学版) 36 263]

    [27]

    Kawasaki Z, Matsuura K 2000 Appl. Energy 67 147

    [28]

    Lalande P, Delannoy A 2012 Aerospace Lab. 5 8

  • [1]

    Fisher B, Taeuber R, Crouch K 1988 AIAA 26th Aerospace Sciences Meeting Reno, USA, January 11–14, 1988

    [2]

    Jones C, Rowse D, Odam G 2001 Int. Conf. on Lightning and Static Electricity Seattle, USA, Septemder 10–14, 2001

    [3]

    Fisher B D, Brown P W, Plumer J A 1986 Proceedings of 11th International Aero space and Ground Conference on Lightning and Static Electricity Dayton, Ohio, USA, June 24–26, 1986

    [4]

    Stahmann J R 1968 Proceedings of Lightning and Static Electricity Conference Miami, USA, December 3–5, 1968, p135

    [5]

    MIL-STD-464A 2002 Electromagnetic Environment Effects Requirements for Systems (USA: Department of Defense Interface Standard)

    [6]

    HB6129 1987 Aircraft Lightning Protection Requirements and Test Methods (Beijing: Ministry of Ariation Industry of the PRC) (in Chinese) [HB6129 1987 飞机雷电防护要求及试验方法 (北京: 中华人民共和国航空工业部)]

    [7]

    GJB2639 1996 Military Aircraft Lightning Protection (Beijing: The Commission of Science, Technology and Industry for Natiand Defense of the PRC) (in Chinese) [GJB2639 1996 军用飞机雷电防护(北京: 中华人民共和国国防科学技术工业委员会)]

    [8]

    SAE-ARP5416 2005 Aircraft Lighting Test Methods (USA: Society of Automotive Engineers International)

    [9]

    Jones C C R 1989 International Aerospace and Ground Conference on Lightning and Statis Electricity Bath, UK, September 25–28, 1989

    [10]

    Lalande P, Bondiou-Clergerie A, Laroche P 1999 Int. Conf. on Lightning and Static Electricity Toulouse, France, June 22–24, 1999 p249

    [11]

    Song S, Gao C, Guo Y C, Yang Q, Zhou B H 2011 Mechanic Automation and Control Engineering (MACE) 2011 Second International Conference on. IEEE, Imer Mongolia, China, July 15–17, 2011 p4428

    [12]

    Zhao Y L, Liu G B, Yu Z Y 2012 Journal of Microwaves 28 39 (in Chinese) [赵玉龙, 刘光斌, 余志勇 2012 微波学报 28 39]

    [13]

    Wang C X, Qie X S, Jiang R B, Yang J 2012 Acta Phys. Sin. 61 039203 (in Chinese) [王彩霞, 郄秀书, 蒋如斌, 杨静 2012 物理学报 61 039203]

    [14]

    Feng G L, Qie X S, Zhao Y, Kong X Z, Zhang G S, Zhang T, Yang J, Zhang Q L, Wang D F 2009 Acta Phys. Sin. 58 6616 (in Chinese) [冯桂力, 郄秀书, 赵阳, 孔祥贞, 张广庶, 张彤, 杨静, 张其林, 王东方 2009 物理学报 58 6616]

    [15]

    Wang C W, Liu X S, Zhang Y J, Xiao Q F 2000 Physics 29 536 (in Chinese) [王才伟, 刘欣生, 张义军, 肖庆复 2000 物理 29 536]

    [16]

    Zhang Z, Lu X, Liang W X, Hao Z Q, Zhou M L, Wang Z H, Zhang J 2009 Chin. Phys. B 18 1136

    [17]

    Petrov N I, Petrova G N, D’Alessandro F 2003 IEEE Trans. Dielectr. Electr. Insulat. 10 641

    [18]

    Fu J, Sima W X, Li J B, Yang Q, Sun C X 2009 High Voltage Engineering 35 1274 (in Chinese) [伏进, 司马文霞, 李建标, 杨庆, 孙才新 2009 高电压技术 35 1274]

    [19]

    He J L, Dong L, Zhang X W, Zeng R 2010 High Voltage Engineering 36 1333 (in Chinese) [何金良, 董林, 张薛巍, 曾嵘 2010 高电压技术 36 1333]

    [20]

    He J L, Zhang X W, Dong L, Zeng R, Liu Z H 2009 Sci. China. E: Tech. 39 1818 (in Chinese) [何金良, 张薛巍, 董林, 曾嵘, 刘泽洪 2009 中国科学 E辑: 技术科学 39 1818]

    [21]

    Huo Y L, Zhang G S, L S H, Yuan P 2013 Acta Phys. Sin. 62 059201 (in Chinese) [火元莲, 张广庶, 吕世华, 袁萍 2013 物理学报 62 059201]

    [22]

    Chifford D W 1975 Proceedings of Lightning and Static Electricity Conference Culham, England, April 14–18, 1975

    [23]

    Wen H, Wang H 2011 High Voltage Apparatus 47 104 (in Chinese) [温浩, 王宏 2011 高压电器 47 104]

    [24]

    Niemeyer L, Pietronero L, Wisemann H J 1984 Phys. Rev. Lett. 52 1033

    [25]

    Wiesmann H J, Zeller H R 1986 J. Appl. Phys. 60 1770

    [26]

    Wan H J, Wei G H, Chen Y Z, Chen Q 2012 J. Hebei Normal Univ. (Natural Science Edition) 36 263 (in Chinese) [万浩江, 魏光辉, 陈亚洲, 陈强 2012 河北师范大学学报 (自然科学版) 36 263]

    [27]

    Kawasaki Z, Matsuura K 2000 Appl. Energy 67 147

    [28]

    Lalande P, Delannoy A 2012 Aerospace Lab. 5 8

  • [1] 杜啸颖, 俞振华. 分形格点中伊辛模型的临界行为. 物理学报, 2023, 72(8): 080503. doi: 10.7498/aps.72.20222432
    [2] 丁慧强, 戴婷婷, 程鸾, 张卫宁, 王恩科. 低横动量$\varUpsilon(1 S)$介子在强子气体中的分布. 物理学报, 2023, 72(19): 192501. doi: 10.7498/aps.72.20230990
    [3] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电. 物理学报, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [4] 李宗祥, 蒋如斌, 吕冠霖, 刘明远, 孙竹玲, 张鸿波, 刘昆, 李小强, 张雄. 人工引发闪电上行负先导的发展传输特征. 物理学报, 2021, 70(19): 199201. doi: 10.7498/aps.70.20210283
    [5] 杨毅, 唐刚, 张哲, 寻之朋, 宋丽建, 韩奎. 科赫分形基底上受限固-固模型动力学标度行为的数值研究. 物理学报, 2015, 64(13): 130501. doi: 10.7498/aps.64.130501
    [6] 杨毅, 唐刚, 宋丽建, 寻之朋, 夏辉, 郝大鹏. 分形基底上受限固-固模型动力学性质的数值模拟研究. 物理学报, 2014, 63(15): 150501. doi: 10.7498/aps.63.150501
    [7] 张永伟, 唐刚, 韩奎, 寻之朋, 谢裕颖, 李炎. 分形基底上刻蚀模型动力学标度行为的数值模拟研究. 物理学报, 2012, 61(2): 020511. doi: 10.7498/aps.61.020511
    [8] 杨娟, 卞保民, 彭刚, 李振华. 随机信号双参数脉冲模型的分形特征. 物理学报, 2011, 60(1): 010508. doi: 10.7498/aps.60.010508
    [9] 邢长明, 刘方爱. 基于Sierpinski分形垫的确定性复杂网络演化模型研究. 物理学报, 2010, 59(3): 1608-1614. doi: 10.7498/aps.59.1608
    [10] 张青, 邓小玖, 张启兴, 李耀东, 张永明. 火灾烟颗粒分形模型和球形模型光散射的比较研究. 物理学报, 2010, 59(10): 7442-7446. doi: 10.7498/aps.59.7442
    [11] 杨俊岭, 郭立新, 万建伟. 基于未充分发展海谱的分形海面模型及其电磁散射研究. 物理学报, 2007, 56(4): 2106-2114. doi: 10.7498/aps.56.2106
    [12] 王运华, 郭立新, 吴振森. 改进的二维分形模型在海面电磁散射中的应用. 物理学报, 2006, 55(10): 5191-5199. doi: 10.7498/aps.55.5191
    [13] 丁国华, 祖方遒, 李先芬, 席 赟, 沈融融. 液态In-80wt%Sn合金结构的分形分析. 物理学报, 2006, 55(8): 4188-4192. doi: 10.7498/aps.55.4188
    [14] 孙春峰. 钻石分形晶格上Ising模型的配分函数与关联函数. 物理学报, 2005, 54(8): 3768-3773. doi: 10.7498/aps.54.3768
    [15] 齐红基, 黄立华, 邵建达, 范正修. Kuramoto-Sivashinsky与Karda-Parisi-Zhang模型中生长界面分形特性研究. 物理学报, 2003, 52(11): 2743-2749. doi: 10.7498/aps.52.2743
    [16] 李英, 孔祥木, 黄家寅. X分形晶格上Gauss模型的临界性质. 物理学报, 2002, 51(6): 1346-1349. doi: 10.7498/aps.51.1346
    [17] 张济忠. 氧化钼分形生长的核晶凝聚模型. 物理学报, 1992, 41(8): 1302-1307. doi: 10.7498/aps.41.1302
    [18] 陈式刚. 连续相变临界点处的分形结构. 物理学报, 1991, 40(4): 584-587. doi: 10.7498/aps.40.584
    [19] 吴式枢. 自旋波理论最近的发展. 物理学报, 1958, 14(3): 233-243. doi: 10.7498/aps.14.233
    [20] 周培源. 湍流理论的近代发展. 物理学报, 1957, 13(3): 220-244. doi: 10.7498/aps.13.220
计量
  • 文章访问数:  5115
  • PDF下载量:  569
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-27
  • 修回日期:  2013-09-29
  • 刊出日期:  2014-01-05

/

返回文章
返回