搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属玻璃的断裂机理与其断裂韧度的关系

吴飞飞 余鹏 卞西磊 谭军 王建国 王刚

引用本文:
Citation:

金属玻璃的断裂机理与其断裂韧度的关系

吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚

Correlation between fracture mechanism and fracture toughness in metallic glasses

Wu Fei-Fei, Yu Peng, Bian Xi-Lei, Tan Jun, Wang Jian-Guo, Wang Gang
PDF
导出引用
  • 本文选取了三种不同断裂韧度值的金属玻璃Zr41.25Ti13.75Ni10Cu12.5Be22.5,Ce68Al10Cu20Co2和Fe41Co7Cr15Mo14Y2C15B6,通过压缩实验测量了它们的应力-应变关系;样品断裂以后观察了其断口形貌,发现这三种金属玻璃具有不同的断裂模式. 经过对这三种金属玻璃做缺口三点弯曲实验,利用数字散斑技术研究了缺口前端应变集中方向弹性应变场的演化过程. 根据金属玻璃的屈服准则,阐述了不同断裂韧度值的金属玻璃的断裂机理.
    Three metallic glasses Zr41.25Ti13.75Ni10Cu12.5Be22.5, Ce68Al10Cu20Co2 and Fe41Co7Cr15Mo14Y2C15B6(all in at.%), were compressed experimentally, and the fractured samples were investigated by scanning electron microscope. It was found that they exhibit different fracture modes. In three-point bending tests of the three pre-notched metallic glass samples, a digital speckle technique is adopted to in-situ observe the elastic strain field evolution in front of the crack tip. Accroding to the yield criterion of metallic glasses, the mechanism of different fracture processes in metallic glasses with various fracture toughnesses are elucidated.
    • 基金项目: 国家自然科学基金(批准号:51271210,51101178)、重庆市基础与前沿研究计划杰青项目(批准号:cstc2013jcyjjq50002)和重庆市教委自然科学基金(批准号:KJ120610)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51271210, 51101178), the Outstanding Youth Project of the Basic and Frontier Research Program of Chongqing, China (Grant No. cstc2013jcyjjq50002), and the Natural Science Foundation of Chongqing Municipal Education Commission, China (Grant No. KJ120610).
    [1]

    Inoue A 2000 Acta Mater. 48 279

    [2]

    Yang L, Guo G Q 2010 Chin. Phys. B 19 126101

    [3]

    Li Z, Bai H Y, Zhao D Q, Pan M X, Wang W L, Wang W H 2003 Acta Phys. Sin. 52 652 (in Chinese)[李正, 白海洋, 赵德乾, 潘明祥, 王万录, 汪卫华 2003 物理学报 52 652]

    [4]

    Zhao Z F, Zhang Z, Li Z, Wen P, Zhao D Q, Pan M X, Wang W L, Wang W H 2004 Acta Phys. Sin. 53 850 (in Chinese)[赵作峰, 张志, 李正, 闻平, 赵德乾, 潘明祥, 王万录, 汪卫华 2004 物理学报 53 850]

    [5]

    Zhang Y, Greer A L 2006 Appl. Phys. Lett. 89 071907

    [6]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [7]

    Schuh C A, Lund A C 2003 Nat. Mater. 2 449

    [8]

    Spaepen F 1977 Acta Metall. 25 407

    [9]

    Flores K M, Dauskardt R H 1999 Script. Mater. 41 937

    [10]

    Zhang Z F, Eckert J, Schultz L 2003 Acta Mater. 51 1167

    [11]

    Lewandowski J J, Wang W H, Greer A L 2005 Phil. Mag. Lett. 85 77

    [12]

    Bei H, Xie S, George E P 2006 Phys. Rev. Lett. 96 105503; Hays C C, Kim C P, Johnson W L 2000 Phys. Rev. Lett. 84 2901

    [13]

    Xi X K, Zhao D Q, Pan M X, Wang W H 2006 Appl. Phys. Lett. 89 181911

    [14]

    Xu X H, Ma S P, Xia M F, Ke F J, Bai Y L 2005 Theor. Appl. Fract. Mech. 44 146

    [15]

    Wang G, Xu X H, Ke F J, Wang W H 2008 J. Appl. Phys. 104 073530

    [16]

    Kim C P, Suh J Y, Wiest A, Lind M L, Conner R D, Johnson W L 2009 Script. Mater. 60 80

    [17]

    Xi X K, Zhao D Q, Pan M X, Wang W H, Wu Y, Lewandowski J J 2005 Phys. Rev. Lett. 94 125510

    [18]

    Murakami Y 1987 Stress Intensity Factors Handbook (Vol. 2) (Oxford, United Kingdom: Pergamon Press) p666

    [19]

    Pampillo C A 1975 J. Mater. Sci. 10 1194

    [20]

    Zhang Z F, He G, Eckert J, Schultz L 2003 Phys. Rev. Lett. 91 045505

    [21]

    Subhash G, Dowding J R, Keczkes L J 2002 Mater. Sci. Eng. A 334 33

    [22]

    Bruck H A, Rosakis A J, Johnson W L 1996 J. Mater. Res. 11 503

    [23]

    Taylor G 1950 Proc. Roy. Soc. Lond. A 201 192

    [24]

    Zhang Z F, He G, Zhang H, Eckert J 2005 Script. Mater. 52 945

    [25]

    Liu X F, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Appl. Phys. Lett. 91 041901

    [26]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [27]

    Wang G, Shen J, Sun J F, Lu Z P, Stachurski Z H, Zhou B D 2005 Mater. Sci. Eng. A 398 82

    [28]

    Wang G, Zhao D Q, Bai H Y, Pan M X, Xia A L, Han B S, Xi X K, Wu Y, Wang W H 2007 Phys. Rev. Lett. 98 235501

    [29]

    Yu P, Wang R J, Zhao D Q, Bai H Y 2007 Appl. Phys. Lett. 90 251904

    [30]

    Rice J R 1988 J. Appl. Mech. 55 98

    [31]

    Qiao D C, Wang G Y, Liaw P K, Ponnambalam V, Poon S J, Shiflet G 2007 J. Mater. Res. 22 544

  • [1]

    Inoue A 2000 Acta Mater. 48 279

    [2]

    Yang L, Guo G Q 2010 Chin. Phys. B 19 126101

    [3]

    Li Z, Bai H Y, Zhao D Q, Pan M X, Wang W L, Wang W H 2003 Acta Phys. Sin. 52 652 (in Chinese)[李正, 白海洋, 赵德乾, 潘明祥, 王万录, 汪卫华 2003 物理学报 52 652]

    [4]

    Zhao Z F, Zhang Z, Li Z, Wen P, Zhao D Q, Pan M X, Wang W L, Wang W H 2004 Acta Phys. Sin. 53 850 (in Chinese)[赵作峰, 张志, 李正, 闻平, 赵德乾, 潘明祥, 王万录, 汪卫华 2004 物理学报 53 850]

    [5]

    Zhang Y, Greer A L 2006 Appl. Phys. Lett. 89 071907

    [6]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [7]

    Schuh C A, Lund A C 2003 Nat. Mater. 2 449

    [8]

    Spaepen F 1977 Acta Metall. 25 407

    [9]

    Flores K M, Dauskardt R H 1999 Script. Mater. 41 937

    [10]

    Zhang Z F, Eckert J, Schultz L 2003 Acta Mater. 51 1167

    [11]

    Lewandowski J J, Wang W H, Greer A L 2005 Phil. Mag. Lett. 85 77

    [12]

    Bei H, Xie S, George E P 2006 Phys. Rev. Lett. 96 105503; Hays C C, Kim C P, Johnson W L 2000 Phys. Rev. Lett. 84 2901

    [13]

    Xi X K, Zhao D Q, Pan M X, Wang W H 2006 Appl. Phys. Lett. 89 181911

    [14]

    Xu X H, Ma S P, Xia M F, Ke F J, Bai Y L 2005 Theor. Appl. Fract. Mech. 44 146

    [15]

    Wang G, Xu X H, Ke F J, Wang W H 2008 J. Appl. Phys. 104 073530

    [16]

    Kim C P, Suh J Y, Wiest A, Lind M L, Conner R D, Johnson W L 2009 Script. Mater. 60 80

    [17]

    Xi X K, Zhao D Q, Pan M X, Wang W H, Wu Y, Lewandowski J J 2005 Phys. Rev. Lett. 94 125510

    [18]

    Murakami Y 1987 Stress Intensity Factors Handbook (Vol. 2) (Oxford, United Kingdom: Pergamon Press) p666

    [19]

    Pampillo C A 1975 J. Mater. Sci. 10 1194

    [20]

    Zhang Z F, He G, Eckert J, Schultz L 2003 Phys. Rev. Lett. 91 045505

    [21]

    Subhash G, Dowding J R, Keczkes L J 2002 Mater. Sci. Eng. A 334 33

    [22]

    Bruck H A, Rosakis A J, Johnson W L 1996 J. Mater. Res. 11 503

    [23]

    Taylor G 1950 Proc. Roy. Soc. Lond. A 201 192

    [24]

    Zhang Z F, He G, Zhang H, Eckert J 2005 Script. Mater. 52 945

    [25]

    Liu X F, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Appl. Phys. Lett. 91 041901

    [26]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [27]

    Wang G, Shen J, Sun J F, Lu Z P, Stachurski Z H, Zhou B D 2005 Mater. Sci. Eng. A 398 82

    [28]

    Wang G, Zhao D Q, Bai H Y, Pan M X, Xia A L, Han B S, Xi X K, Wu Y, Wang W H 2007 Phys. Rev. Lett. 98 235501

    [29]

    Yu P, Wang R J, Zhao D Q, Bai H Y 2007 Appl. Phys. Lett. 90 251904

    [30]

    Rice J R 1988 J. Appl. Mech. 55 98

    [31]

    Qiao D C, Wang G Y, Liaw P K, Ponnambalam V, Poon S J, Shiflet G 2007 J. Mater. Res. 22 544

  • [1] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 物理学报, 2022, 71(5): 058101. doi: 10.7498/aps.71.20211304
    [2] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211304
    [3] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [4] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索. 物理学报, 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [5] 武振伟, 李茂枝, 徐莉梅, 汪卫华. 非晶中结构遗传性及描述. 物理学报, 2017, 66(17): 176405. doi: 10.7498/aps.66.176405
    [6] 柳延辉. 非晶合金的高通量制备与表征. 物理学报, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [7] 于海滨, 杨群. 超稳定玻璃. 物理学报, 2017, 66(17): 176108. doi: 10.7498/aps.66.176108
    [8] 王军强, 欧阳酥. 金属玻璃流变的扩展弹性模型. 物理学报, 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [9] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型. 物理学报, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [10] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [11] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象. 物理学报, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [12] 郭古青, 吴诗阳, 蔡光博, 杨亮. 判定金属玻璃微观结构中的二十面体类团簇. 物理学报, 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [13] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为. 物理学报, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [14] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [15] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究. 物理学报, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [16] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [17] 徐春华, 刘春香, 郭红莲, 李兆霖, 降雨强, 张道中, 袁 明. 荧光标记微管的光敏断裂及机理. 物理学报, 2006, 55(1): 206-210. doi: 10.7498/aps.55.206
    [18] 王永田, 赵作峰, 庞智勇, 刘 冉, 潘明祥, 赵德乾, 王万录, 韩宝善, 汪卫华. Pr基大块纳米晶合金及其特性研究. 物理学报, 2005, 54(6): 2838-2842. doi: 10.7498/aps.54.2838
    [19] 佟存柱, 郑萍, 白海洋, 陈兆甲, 雒建林, 张杰, 林德华, 汪卫华. 块体金属玻璃Zr_(48)Nb_8Cu_(12)Fe_8Be_(24)低温电阻的研究. 物理学报, 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
    [20] 邢修三. 金属的断裂韧性. 物理学报, 1983, 32(10): 1255-1262. doi: 10.7498/aps.32.1255
计量
  • 文章访问数:  4070
  • PDF下载量:  1109
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-07
  • 修回日期:  2013-11-12
  • 刊出日期:  2014-03-05

金属玻璃的断裂机理与其断裂韧度的关系

  • 1. 光电工程材料重庆市重点实验室, 重庆师范大学物理与电子工程学院, 重庆 401331;
  • 2. 上海大学微结构重点实验室, 上海 200444
    基金项目: 国家自然科学基金(批准号:51271210,51101178)、重庆市基础与前沿研究计划杰青项目(批准号:cstc2013jcyjjq50002)和重庆市教委自然科学基金(批准号:KJ120610)资助的课题.

摘要: 本文选取了三种不同断裂韧度值的金属玻璃Zr41.25Ti13.75Ni10Cu12.5Be22.5,Ce68Al10Cu20Co2和Fe41Co7Cr15Mo14Y2C15B6,通过压缩实验测量了它们的应力-应变关系;样品断裂以后观察了其断口形貌,发现这三种金属玻璃具有不同的断裂模式. 经过对这三种金属玻璃做缺口三点弯曲实验,利用数字散斑技术研究了缺口前端应变集中方向弹性应变场的演化过程. 根据金属玻璃的屈服准则,阐述了不同断裂韧度值的金属玻璃的断裂机理.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回