搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时滞耦合映像格子的多耦合边耦合网络级联抗毁性研究

彭兴钊 姚宏 杜军 丁超 张志浩

引用本文:
Citation:

基于时滞耦合映像格子的多耦合边耦合网络级联抗毁性研究

彭兴钊, 姚宏, 杜军, 丁超, 张志浩

Study on cascading invulnerability of multi-coupling-links coupled networks based on time-delay coupled map lattices model

Peng Xing-Zhao, Yao Hong, Du Jun, Ding Chao, Zhang Zhi-Hao
PDF
导出引用
  • 现实中各网络之间的耦合促进了网络间的交流,但也带来了级联故障大范围传播的风险. 考虑到故障的传播一般存在时滞,并且一个节点可能拥有不止一条耦合边的情况,本文构建了基于时滞耦合映像格子的多耦合边无标度耦合网络级联故障模型. 研究表明,对于BA(Barabási-Albert)无标度耦合网络,存在一个阈值hT ≈ 3,当耦合强度小于此阈值时,耦合越强抗毁性越弱;反之,耦合越强抗毁性反而越强. 另外,研究发现时滞对耦合网络的影响不仅仅是延长了故障传播的时间,为采取防护措施争取了时间,而且也对最终故障规模产生了影响,具体地,当层内时滞τ1和层间时滞τ2可取任意值时,当两者成整数倍关系时其最终故障规模将更大. 本文的研究可为构建高抗毁性的耦合网络或提高耦合网络的级联抗毁性提供参考.
    The couplings among different networks facilitate their communications, while at the same time they also bring the risk of enhancing the wide spread of cascading failures to the coupled networks. Given that there is usually the time-delay during the spread of failures and more than one coupling link a node might possess, a cascading failure model for scale-free multi-coupling-link coupled networks is built in this paper, based on time-delay coupled map lattices (CML) model, which may be wider representative than previous models. Our research shows that in BA (Barabási-Albert) scale-free coupled networks, there is a threshold hT ≈ 3: when the coupling strength is bellow this threshold, the stronger coupling strength corresponds to a lower invulnerability; and vice versa, the stronger coupling strength would bring a higher invulnerability. In addition, our studies show that the presence of time-delay not only prolongs the failure spreading time during which measures can be taken to suppress cascading failures, but also has a significant influence on the eventual cascading size, for detail, if intra-layer time-delay τ1 and inter-layer time-delay τ2 can have any values, then the multiples of the two numbers will cause larger cascading size. We hope our research can provide a reference for building high-invulnerable coupled networks or the increase of the invulnerability of the coupled networks.
    • 基金项目: 陕西省自然科学基金(批准号:2012JM8035)资助的课题.
    • Funds: Project supported by the Shaanxi Science Foundation of China (Grant No. 2012JM8035).
    [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabási A L, Albert R 1999 Science 286 509

    [3]

    Liu G, Li Y S 2012 Acta Phys. Sin. 61 108901 (in Chinese)[刘刚, 李永树2012 物理学报61 108901]

    [4]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwanga D U 2006 Phys. Rep. 424 175

    [5]

    Zhao L, Park K, Lai Y C 2004 Phys. Rev. E 70 035101 (R)

    [6]

    Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102

    [7]

    Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104(R)

    [8]

    Wang X F, Xu J 2004 Phys. Rev. E 70 056113

    [9]

    Wang J W 2012 Physica A 391 4004

    [10]

    Wang J W, Rong L L, Zhang L, Zhang Z Z 2008 Physica A 387 6671

    [11]

    Ash J, Newth D 2007 Physica A 380 673

    [12]

    Motter A E 2004 Phys. Rev. Lett. 93 098701

    [13]

    Dou B L, Wang X G, Zhang S Y 2010 Physica A 389 2310

    [14]

    Hu K, Hu T, Tang Y 2010 Chin. Phys. B 19 080206

    [15]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [16]

    Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 036116

    [17]

    Gao J X, Buldyrev S V, Stanley H E, Havlin S 2012 Nature Physics. 8 40

    [18]

    Li W, Bashan A, Buldyrev S V, Stanley H E, Havlin S 2012 Phys. Rev. Lett. 108 228702

    [19]

    Huang X Q, Shao S, Wang H J, Buldyrev S V, Stanley H E, Havlin S 2013 EPL 101 18002

    [20]

    Brummitt C D, D Souza R M, Leicht E A 2012 PNAS 109 E680

    [21]

    Tan F, Xia Y X, Zhang W P, Jin X Y 2013 EPL 102 28009

    [22]

    Qiu Y Z 2013 Physica A 392 1920

    [23]

    Xu J, Wang X F 2005 Physica A 349 685

    [24]

    Cui D, Gao Z Y, Zhao X M 2008 Chin. Phys. B 17 1703

    [25]

    Cui D, Gao Z Y, Zheng J F 2009 Chin. Phys. B 18 992

    [26]

    Holme P, Kim B J, Yoon C N, Han S K 2002 Phys. Rev. E 65 056109

  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabási A L, Albert R 1999 Science 286 509

    [3]

    Liu G, Li Y S 2012 Acta Phys. Sin. 61 108901 (in Chinese)[刘刚, 李永树2012 物理学报61 108901]

    [4]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwanga D U 2006 Phys. Rep. 424 175

    [5]

    Zhao L, Park K, Lai Y C 2004 Phys. Rev. E 70 035101 (R)

    [6]

    Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102

    [7]

    Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104(R)

    [8]

    Wang X F, Xu J 2004 Phys. Rev. E 70 056113

    [9]

    Wang J W 2012 Physica A 391 4004

    [10]

    Wang J W, Rong L L, Zhang L, Zhang Z Z 2008 Physica A 387 6671

    [11]

    Ash J, Newth D 2007 Physica A 380 673

    [12]

    Motter A E 2004 Phys. Rev. Lett. 93 098701

    [13]

    Dou B L, Wang X G, Zhang S Y 2010 Physica A 389 2310

    [14]

    Hu K, Hu T, Tang Y 2010 Chin. Phys. B 19 080206

    [15]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [16]

    Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 036116

    [17]

    Gao J X, Buldyrev S V, Stanley H E, Havlin S 2012 Nature Physics. 8 40

    [18]

    Li W, Bashan A, Buldyrev S V, Stanley H E, Havlin S 2012 Phys. Rev. Lett. 108 228702

    [19]

    Huang X Q, Shao S, Wang H J, Buldyrev S V, Stanley H E, Havlin S 2013 EPL 101 18002

    [20]

    Brummitt C D, D Souza R M, Leicht E A 2012 PNAS 109 E680

    [21]

    Tan F, Xia Y X, Zhang W P, Jin X Y 2013 EPL 102 28009

    [22]

    Qiu Y Z 2013 Physica A 392 1920

    [23]

    Xu J, Wang X F 2005 Physica A 349 685

    [24]

    Cui D, Gao Z Y, Zhao X M 2008 Chin. Phys. B 17 1703

    [25]

    Cui D, Gao Z Y, Zheng J F 2009 Chin. Phys. B 18 992

    [26]

    Holme P, Kim B J, Yoon C N, Han S K 2002 Phys. Rev. E 65 056109

  • [1] 马金龙, 杜长峰, 隋伟, 许向阳. 基于耦合强度的双层网络数据传输能力. 物理学报, 2020, 69(18): 188901. doi: 10.7498/aps.69.20200181
    [2] 金学广, 寿国础, 胡怡红, 郭志刚. 面向成本-收益好的无标度耦合网络构建方法. 物理学报, 2016, 65(9): 098901. doi: 10.7498/aps.65.098901
    [3] 韩敏, 张雅美, 张檬. 具有双重时滞的时变耦合复杂网络的牵制外同步研究. 物理学报, 2015, 64(7): 070506. doi: 10.7498/aps.64.070506
    [4] 汪仲清, 赵小奇, 周贤菊. 原子在弱相干场光纤耦合腔系统中的纠缠特性. 物理学报, 2013, 62(22): 220302. doi: 10.7498/aps.62.220302
    [5] 刘莹莹, 潘炜, 江宁, 项水英, 林煜东. 链式互耦合半导体激光器的实时混沌同步. 物理学报, 2013, 62(2): 024208. doi: 10.7498/aps.62.024208
    [6] 梁义, 王兴元. 结点含时滞的具有零和非零时滞耦合的复杂网络混沌同步. 物理学报, 2013, 62(1): 018901. doi: 10.7498/aps.62.018901
    [7] 张丽, 杨晓丽, 孙中奎. 噪声环境下时滞耦合网络的广义投影滞后同步. 物理学报, 2013, 62(24): 240502. doi: 10.7498/aps.62.240502
    [8] 谭红芳, 金涛, 屈世显. 一个全局耦合不连续映像格子中的冻结化随机图案模式. 物理学报, 2012, 61(4): 040507. doi: 10.7498/aps.61.040507
    [9] 徐昌进. 厄尔尼诺-南方波涛动时滞海气振子耦合模型的分岔分析 . 物理学报, 2012, 61(22): 220203. doi: 10.7498/aps.61.220203
    [10] 王开, 裴文江, 张毅峰, 周思源, 邵硕. 基于符号向量动力学的耦合映像格子参数估计. 物理学报, 2011, 60(7): 070502. doi: 10.7498/aps.60.070502
    [11] 卞秋香, 姚洪兴. 非线性耦合多重边赋权复杂网络的同步. 物理学报, 2010, 59(5): 3027-3034. doi: 10.7498/aps.59.3027
    [12] 张晓芳, 陈章耀, 毕勤胜. 耦合电路中的复杂振荡行为分析. 物理学报, 2009, 58(5): 2963-2970. doi: 10.7498/aps.58.2963
    [13] 沈民奋, 林兰馨, 李小艳, 常春起. 基于符号动力学的耦合映像格子系统的初值估计. 物理学报, 2009, 58(5): 2921-2929. doi: 10.7498/aps.58.2921
    [14] 刘建东, 余有明. 基于可变参数双向耦合映像系统的时空混沌Hash函数设计. 物理学报, 2007, 56(3): 1297-1304. doi: 10.7498/aps.56.1297
    [15] 王 开, 裴文江, 夏海山, 何振亚. 基于符号向量动力学的耦合映像格子初始向量估计. 物理学报, 2007, 56(7): 3766-3770. doi: 10.7498/aps.56.3766
    [16] 庞 全, 武 薇, 范影乐. 基于多重耦合映像格子的信号初值恢复研究. 物理学报, 2007, 56(12): 6836-6842. doi: 10.7498/aps.56.6836
    [17] 王占山, 张化光. 时滞递归神经网络中神经抑制的作用. 物理学报, 2006, 55(11): 5674-5680. doi: 10.7498/aps.55.5674
    [18] 莫嘉琪, 王 辉, 林万涛. 厄尔尼诺-南方涛动时滞海-气振子耦合模型. 物理学报, 2006, 55(7): 3229-3232. doi: 10.7498/aps.55.3229
    [19] 刘 英, 沈民奋, 陈和晏. 基于时变耦合映像格子模型的信号初值估计. 物理学报, 2006, 55(2): 564-571. doi: 10.7498/aps.55.564
    [20] 蒋品群, 汪秉宏, 夏清华, 卜寿亮. 耦合映像格子中时空混沌的状态反馈控制. 物理学报, 2004, 53(10): 3280-3286. doi: 10.7498/aps.53.3280
计量
  • 文章访问数:  3178
  • PDF下载量:  470
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-14
  • 修回日期:  2013-12-13
  • 刊出日期:  2014-04-05

基于时滞耦合映像格子的多耦合边耦合网络级联抗毁性研究

  • 1. 空军工程大学航空航天工程学院, 西安 710038;
  • 2. 空军工程大学理学院, 西安 710051
    基金项目: 陕西省自然科学基金(批准号:2012JM8035)资助的课题.

摘要: 现实中各网络之间的耦合促进了网络间的交流,但也带来了级联故障大范围传播的风险. 考虑到故障的传播一般存在时滞,并且一个节点可能拥有不止一条耦合边的情况,本文构建了基于时滞耦合映像格子的多耦合边无标度耦合网络级联故障模型. 研究表明,对于BA(Barabási-Albert)无标度耦合网络,存在一个阈值hT ≈ 3,当耦合强度小于此阈值时,耦合越强抗毁性越弱;反之,耦合越强抗毁性反而越强. 另外,研究发现时滞对耦合网络的影响不仅仅是延长了故障传播的时间,为采取防护措施争取了时间,而且也对最终故障规模产生了影响,具体地,当层内时滞τ1和层间时滞τ2可取任意值时,当两者成整数倍关系时其最终故障规模将更大. 本文的研究可为构建高抗毁性的耦合网络或提高耦合网络的级联抗毁性提供参考.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回