搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于回转体型艇身的电磁流体表面推进与矢量控制特性研究

刘宗凯 顾金良 周本谋 纪延亮 黄亚冬 徐驰

引用本文:
Citation:

基于回转体型艇身的电磁流体表面推进与矢量控制特性研究

刘宗凯, 顾金良, 周本谋, 纪延亮, 黄亚冬, 徐驰

Investigation of electromagnetic hydrodynamics propulsion and vector control by surfaces based on a rotational navigation body

Liu Zong-Kai, Gu Jin-Liang, Zhou Ben-Mou, Ji Yan-Liang, Huang Ya-Dong, Xu Chi
PDF
导出引用
  • 电磁流体表面推进是在推进体周围的导电流体中(海水、等离子体等)激励出电磁体积力,并利用电磁体积力的反作用力达到推进的目的. 本文基于电磁场和流体力学的基本控制方程,通过电磁场有限元方法探讨了电磁流体表面推进在回转体型艇身上的矢量控制效果,并分析了在两种不同的电磁力作用区域下航行器周围的场强的分布特征以及受力情况. 结果表明:这种控制方式可以在不改变航行器攻角和推力方向的情况下通过调控电磁力的作用范围来实现航行器姿态调整,进而达到矢量推进与控制的目的;在航行器表面施加控制方式A的电磁力可以使航行器获得一个抬头力矩,而在控制方式B作用下航行器可以同时对俯仰力矩和偏航力矩进行调整. 因此作为一种新兴的推进方式,电磁流体推进不仅具有高速高效、操作简单、高有效载荷等特点,而且矢量推进也成为电磁流体表面推进另外一个优势.
    Realization of electromagnetic hydrodynamics (MHD) propulsion by surfaces needs an electromagnetic body force generated in a conductive fluid (such as seawater and plasma, etc.) around the navigation body. Furthermore, the reaction force against the electromagnetic body force could be used to propel. Based on the basic control equations of electromagnetic field and fluid mechanics, the vector control effect has been analyzed by virtue of field intensity and force distribution characteristic on the rotational navigation body, under two different force action areas. Results show that the navigation attitude adjustment could be realized by this control method without changing attacks and propulsion directions. An upward force moment could be achieved by the control model A. Accordingly, both of the pitching moment and yaw moment could be changed by the control model B. Thus, as a new way of propulsion, the MHD propulsion by surfaces offers several advantages, such as high speed, high efficiency, easy operation, high payload etc. Additionally, in this paper, the vector propulsion has been proved to be one of the remarkable advantages for MHD propulsion by surface.
    • 基金项目: 南京理工大学科研发展基金(批准号:XKF09058)和江苏省普通高校研究生科研创新计划(批准号:CXZZ11_0231)资助的课题.
    • Funds: Project supported by the Scientific Research Development Foundation of Nanjing University of Science and Technology, China (Grant No. XKF 09058), and the Jiangsu Province Ordinary University Graduate Student Research Innovation Project, China (CXZZ11_0231).
    [1]

    Hsiao C T, Pauley L L 1999 J Fluid Eng. 121 3

    [2]

    Wu G L, Yan J 2008 Guang Dong Shipbuilding 4 2(in Chinese) [吴光林, 严谨2008 广东造船4 2]

    [3]

    Gur O, Rosen A 2009 J. Aircraft 46 1

    [4]

    Mei D J, Fan B C, Huang L P 2010 Acta Phys. Sin. 59 6786 (in Chinese)[梅栋杰, 范宝春, 黄乐萍2010 物理学报 59 6786]

    [5]

    Liu Z K, Zhou B M, Liu H X 2011 Acta Phys. Sin. 60 084701 (in Chinese)[刘宗凯, 周本谋, 刘会星2011 物理学报60 084701]

    [6]

    Mason M S, Crowther W J 2004 2nd AIAA Flow Control Conference (Portland: American Institute of Aeronautics and Astronautics) p2210

    [7]

    Kowal H J 2003 Can. Aeronaut. Space J. 48 2

    [8]

    Howse M 2003 Power Eng. 17 35

    [9]

    Landau D, Chase J, Randolph T 2011 J. Spacecraft Rockets, 48 467

    [10]

    Martinez-Sanchez M, Pollard J E 1998 J. Propul. Power 14 688

    [11]

    Schroeder W K 1999 Fuzzy logic autopilot synthesis for a nonlinearly behaved thruster-controlled missile (Arlington: University of Texas at Arlington) pp46–128

    [12]

    Doman D B, Gamble B J, Ngo A D 2007 AIAA Guidance, Navigation, and Control Conference and Exhibit (Hilton Head: American Institute of Aeronautics and Astronautics) p6778

    [13]

    Ridgely D B, Drake D, Triplett L 2007 AIAA Guidance, Navigation, and Control Conference and Exhibit (Hilton Head: American Institute of Aeronautics and Astronautics) p6771

    [14]

    Ju C G, Peng X B, Liu Y 2009 Sci. China Technol. Sc. 39 505 (in Chinese) [琚春光, 彭小波, 刘宇2009 中国科学 E 辑: 技术科学39 505]

    [15]

    Chen Z H, Fan B C, Aubry N 2006 Chinese Phys. Lett. 23 154

    [16]

    Wang M, Xie Y C 2010 Sci. China Technol. Sc. 40 912(in Chinese) [王敏, 解永春2010 中国科学E 辑: 技术科学40 912]

    [17]

    Hua M D, Hamel T, Morin P 2009 IEEE T. Automat. Contr. 54 1837

    [18]

    Xia Y, Fu M 2003 Overview of Flight Vehicle Control-Compound Control Methodology for Flight Vehicles (Berlin: Springer Berlin Heidelberg) pp49-54

    [19]

    Ren Y X, Chen H X 2006 The Basics of Computational Fluid Dynamics (Beijing: Tsinghua University Press) pp13-34 (in Chinese) [任玉新, 陈海昕2006 计算流体力学基础(北京: 清华大学出版社) 第13–34 页]

    [20]

    Liu Z K, Zhou B M, Liu H X 2013 Fluid Dyn. Res. 45 3

    [21]

    Jiang C B, Zhang R L, Ding Z P 2007 Computational Fluid Dynamics(Beijing: China Electric Power Press) pp161-169 (in Chinese) [江春波, 张永良, 丁则平2007 计算流体力学(北京: 中国电力出版社) 第161–169 页]

    [22]

    Joel H F, Milovan P 2002 Computational Methods for Fluid Dynamics (Berlin: Springer-Verlag) pp164–206

  • [1]

    Hsiao C T, Pauley L L 1999 J Fluid Eng. 121 3

    [2]

    Wu G L, Yan J 2008 Guang Dong Shipbuilding 4 2(in Chinese) [吴光林, 严谨2008 广东造船4 2]

    [3]

    Gur O, Rosen A 2009 J. Aircraft 46 1

    [4]

    Mei D J, Fan B C, Huang L P 2010 Acta Phys. Sin. 59 6786 (in Chinese)[梅栋杰, 范宝春, 黄乐萍2010 物理学报 59 6786]

    [5]

    Liu Z K, Zhou B M, Liu H X 2011 Acta Phys. Sin. 60 084701 (in Chinese)[刘宗凯, 周本谋, 刘会星2011 物理学报60 084701]

    [6]

    Mason M S, Crowther W J 2004 2nd AIAA Flow Control Conference (Portland: American Institute of Aeronautics and Astronautics) p2210

    [7]

    Kowal H J 2003 Can. Aeronaut. Space J. 48 2

    [8]

    Howse M 2003 Power Eng. 17 35

    [9]

    Landau D, Chase J, Randolph T 2011 J. Spacecraft Rockets, 48 467

    [10]

    Martinez-Sanchez M, Pollard J E 1998 J. Propul. Power 14 688

    [11]

    Schroeder W K 1999 Fuzzy logic autopilot synthesis for a nonlinearly behaved thruster-controlled missile (Arlington: University of Texas at Arlington) pp46–128

    [12]

    Doman D B, Gamble B J, Ngo A D 2007 AIAA Guidance, Navigation, and Control Conference and Exhibit (Hilton Head: American Institute of Aeronautics and Astronautics) p6778

    [13]

    Ridgely D B, Drake D, Triplett L 2007 AIAA Guidance, Navigation, and Control Conference and Exhibit (Hilton Head: American Institute of Aeronautics and Astronautics) p6771

    [14]

    Ju C G, Peng X B, Liu Y 2009 Sci. China Technol. Sc. 39 505 (in Chinese) [琚春光, 彭小波, 刘宇2009 中国科学 E 辑: 技术科学39 505]

    [15]

    Chen Z H, Fan B C, Aubry N 2006 Chinese Phys. Lett. 23 154

    [16]

    Wang M, Xie Y C 2010 Sci. China Technol. Sc. 40 912(in Chinese) [王敏, 解永春2010 中国科学E 辑: 技术科学40 912]

    [17]

    Hua M D, Hamel T, Morin P 2009 IEEE T. Automat. Contr. 54 1837

    [18]

    Xia Y, Fu M 2003 Overview of Flight Vehicle Control-Compound Control Methodology for Flight Vehicles (Berlin: Springer Berlin Heidelberg) pp49-54

    [19]

    Ren Y X, Chen H X 2006 The Basics of Computational Fluid Dynamics (Beijing: Tsinghua University Press) pp13-34 (in Chinese) [任玉新, 陈海昕2006 计算流体力学基础(北京: 清华大学出版社) 第13–34 页]

    [20]

    Liu Z K, Zhou B M, Liu H X 2013 Fluid Dyn. Res. 45 3

    [21]

    Jiang C B, Zhang R L, Ding Z P 2007 Computational Fluid Dynamics(Beijing: China Electric Power Press) pp161-169 (in Chinese) [江春波, 张永良, 丁则平2007 计算流体力学(北京: 中国电力出版社) 第161–169 页]

    [22]

    Joel H F, Milovan P 2002 Computational Methods for Fluid Dynamics (Berlin: Springer-Verlag) pp164–206

  • [1] 宋武超, 魏英杰, 路丽睿, 王聪, 卢佳兴. 基于势流理论的回转体并联入水双空泡演化动力学研究. 物理学报, 2018, 67(22): 224702. doi: 10.7498/aps.67.20181375
    [2] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [3] 时胜国, 于树华, 时洁, 马根卯. 矢量拖线阵水听器流噪声响应特性. 物理学报, 2015, 64(15): 154306. doi: 10.7498/aps.64.154306
    [4] 席思星, 王晓雷, 黄帅, 常胜江, 林列. 基于扭曲向列液晶空间光调制器的矢量光生成. 物理学报, 2015, 64(11): 114204. doi: 10.7498/aps.64.114204
    [5] 梁国龙, 庞福滨, 张光普. 吸声材料对水下小平台上矢量传感器声学特性的影响研究. 物理学报, 2014, 63(3): 034303. doi: 10.7498/aps.63.034303
    [6] 段萍, 覃海娟, 周新维, 曹安宁, 刘金远, 卿少伟. 霍尔推进器壁面材料二次电子发射及鞘层特性. 物理学报, 2014, 63(8): 085204. doi: 10.7498/aps.63.085204
    [7] 段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟. 电子温度对霍尔推进器等离子体鞘层特性的影响. 物理学报, 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [8] 殷敬伟, 杨森, 杜鹏宇, 余赟, 陈阳. 基于单矢量有源平均声强器的码分多址水声通信. 物理学报, 2012, 61(6): 064302. doi: 10.7498/aps.61.064302
    [9] 邱巍, 马英驰, 吕品, 刘典, 徐晓娟, 张程华. 室温掺铒光纤放大器中实现参量控制无损耗光速减慢传输. 物理学报, 2012, 61(9): 094204. doi: 10.7498/aps.61.094204
    [10] 钟东洲, 吴正茂. 电光调制对外部光反馈垂直腔表面发射激光器输出矢量混沌偏振的操控. 物理学报, 2012, 61(3): 034203. doi: 10.7498/aps.61.034203
    [11] 王进, 尤云祥, 胡天群, 王小青, 朱敏慧. 具有密度跃层分层流体中回转体激发内波特性实验. 物理学报, 2012, 61(7): 074701. doi: 10.7498/aps.61.074701
    [12] 段萍, 李肸, 鄂鹏, 卿绍伟. 霍尔推进器中磁化二次电子对鞘层特性的影响. 物理学报, 2011, 60(12): 125203. doi: 10.7498/aps.60.125203
    [13] 刘宗凯, 周本谋, 刘会星, 刘志刚, 黄翼飞. 电磁流体表面推进机理与效果分析. 物理学报, 2011, 60(8): 084701. doi: 10.7498/aps.60.084701
    [14] 刘迪, 徐伟, 郭培荣, 倪菲. 标量控制下的二次自治混沌系统不确定参数估计和自适应反同步. 物理学报, 2010, 59(9): 5934-5939. doi: 10.7498/aps.59.5934
    [15] 樊华, 李理, 袁坚, 山秀明. 互联网流量控制的朗之万模型及相变分析. 物理学报, 2009, 58(11): 7507-7513. doi: 10.7498/aps.58.7507
    [16] 于达仁, 张凤奎, 李鸿, 刘辉. 霍尔推进器中振荡鞘层对电子与壁面碰撞频率的影响研究. 物理学报, 2009, 58(3): 1844-1848. doi: 10.7498/aps.58.1844
    [17] 钟东洲, 曹文华, 吴正茂, 夏光琼. 各向异性光反馈注入的垂直表面发射激光器的矢量偏振模转换机理. 物理学报, 2008, 57(3): 1548-1556. doi: 10.7498/aps.57.1548
    [18] 钟东洲, 夏光琼, 王 飞, 吴正茂. 基于光反馈的单向耦合注入垂直腔表面发射激光器的矢量混沌同步特性研究. 物理学报, 2007, 56(6): 3279-3291. doi: 10.7498/aps.56.3279
    [19] 周 平. 利用标量控制器实现一类混沌系统同步. 物理学报, 2007, 56(7): 3777-3781. doi: 10.7498/aps.56.3777
    [20] 刘 丁, 钱富才, 任海鹏, 孔志强. 离散混沌系统的最小能量控制. 物理学报, 2004, 53(7): 2074-2079. doi: 10.7498/aps.53.2074
计量
  • 文章访问数:  4778
  • PDF下载量:  461
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-30
  • 修回日期:  2013-11-19
  • 刊出日期:  2014-04-05

/

返回文章
返回