搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自组装银膜增强8-羟基喹啉铝(Alq3)光致发光的实验和理论研究

叶松 王向贤 侯宜栋 张志友 杜惊雷

引用本文:
Citation:

自组装银膜增强8-羟基喹啉铝(Alq3)光致发光的实验和理论研究

叶松, 王向贤, 侯宜栋, 张志友, 杜惊雷

Experimental and theoretical study of tris-(8-hydroxyquinoline) aluminum (Alq3) photoluminescence enhanced by self-assembled silver films

Ye Song, Wang Xiang-Xian, Hou Yi-Dong, Zhang Zhi-You, Du Jing-Lei
PDF
导出引用
  • 实验和理论研究了不同自组装密度的银纳米颗粒膜对 8-羟基喹啉铝(Alq3)光致发光的影响. 结果表明:Alq3光致发光的表观增强和发射增强因子与银纳米颗粒膜密度呈正相关关系,最大值约为3.2 和13;理论计算表明银纳米颗粒膜对Alq3光致发光的量子效率和发射的最大增强因子约为1.4和15. 对比实验和理论结果,金属纳米颗粒膜的近场场强增强是导致Alq3光致发光发射强度增强的主要因素,且Alq3光致发光效率与Alq3相对银纳米颗粒的分布和热点区域面积覆盖率有关.
    Alq3 photoluminescences (PL) enhanced by self-assembled silver films are investigated experimentally and theoretically. The experimental results show that both the apparent enhancement factor (AEF) and the emission enhancement factor (EEF) of Alq3 PL increase with the increase of density of average 70 nm diameter silver nanoparticles on the substrate. The maxima of AEF and EEF are about 3.2 and 13, respectively. Based on the optical antenna theory, the theoretical maxima of both quantum efficiency enhancement factor and EEF of Alq3 PL are about 1.4 and 15, respectively. By comparing of the experimental results with the theoretical results, we can conclude that the near-field enhancement of silver nanoparticles makes a major contribution to Alq3 PL emission enhancement, and the emission enhancement is dependent on the Alq3-silver nanoparticle distance and the area coverage ratio of silver nanoparticles to substrate.
    • 基金项目: 国家自然科学基金(批准号:11305111)、安徽省高校自然科学基金(批准号:KJ2013B163)、巢湖学院自然科学基金(批准号:XLZ201201)和巢湖学院博士科研启动基金(批准号:2012)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11305111), the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJ2013B163), the Natural Science Foundation of Chaohu University, China (Grant No. XLZ201201), and the Starting Foundation of Scientific Research for Doctors of Chaohu University, China (Grant No. 2012).
    [1]

    Reilly T H, van de Lagemaat I J, Tenent R C, Morfa A J, Rowlen K L 2008 Appl. Phys. Lett. 92 243304

    [2]

    Aslan K, Malyn S N, Zhang Y, Geddes C D 2008 J. Appl. Phys. 103 084307

    [3]
    [4]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685

    [5]
    [6]
    [7]

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801 (in Chinese) [佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801]

    [8]

    Ren Y D, Hao S J, Qiu Z Y 2013 Acta Phys. Sin. 62 147302 (in Chinese) [任艳东, 郝淑娟, 邱忠阳 2013 物理学报 62 147302]

    [9]
    [10]

    Qiu D J, Fan W Z, Weng S, Wu H Z, Wang J 2011 Acta Phys. Sin. 60 087301 (in Chinese) [邱东江, 范文志, 翁圣, 吴惠桢, 王俊 2011 物理学报 60 087301]

    [11]
    [12]
    [13]

    Park H J, Vak D, Noh Y Y, Lim B, Kim D Y 2007 Appl. Phys. Lett. 90 161107

    [14]

    Cho K H, Ahn S I, Lee S M, Choi C S, Choi K C 2010 Appl. Phys. Lett. 97 193306

    [15]
    [16]
    [17]

    Yang K Y, Choi K C, Ahn C W 2009 Appl. Phys. Lett. 94 173301

    [18]

    Yang K Y, Choi K C, Ahn C W 2009 Opt. Express 17 11495

    [19]
    [20]
    [21]

    Fujiki A, Uemura T, Zettsu N, Akai-Kasaya M, Saito A, Kuwahara Y 2010 Appl. Phys. Lett. 96 043307

    [22]

    Tagaya M, Ogawa M 2008 Phys. Chem. Chem. Phys. 10 6849

    [23]
    [24]

    Dong Y F, Li Q S 2002 Acta Phys. Sin. 51 1645 (in Chinese) [董艳锋, 李清山 2002 物理学报 51 1645]

    [25]
    [26]
    [27]

    Emmanuel F, Samuel G 2008 J. Phys. D: Appl. Phys. 41 013001

    [28]

    Tanabe K 2008 J. Phys. Chem. C 112 15721

    [29]
    [30]

    Wilson L R, Richards B S 2009 Appl. Opt. 48 212

    [31]
    [32]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [33]
    [34]
    [35]

    Bharadwaj P, Beams R, Novotny L 2011 Chem. Sci. 2 136

    [36]
    [37]

    Mattoussi H, Murata H, Merritt C D, Iizumi Y, Kido J, Kafafi Z H 1999 J. Appl. Phys. 86 2642

  • [1]

    Reilly T H, van de Lagemaat I J, Tenent R C, Morfa A J, Rowlen K L 2008 Appl. Phys. Lett. 92 243304

    [2]

    Aslan K, Malyn S N, Zhang Y, Geddes C D 2008 J. Appl. Phys. 103 084307

    [3]
    [4]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685

    [5]
    [6]
    [7]

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801 (in Chinese) [佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801]

    [8]

    Ren Y D, Hao S J, Qiu Z Y 2013 Acta Phys. Sin. 62 147302 (in Chinese) [任艳东, 郝淑娟, 邱忠阳 2013 物理学报 62 147302]

    [9]
    [10]

    Qiu D J, Fan W Z, Weng S, Wu H Z, Wang J 2011 Acta Phys. Sin. 60 087301 (in Chinese) [邱东江, 范文志, 翁圣, 吴惠桢, 王俊 2011 物理学报 60 087301]

    [11]
    [12]
    [13]

    Park H J, Vak D, Noh Y Y, Lim B, Kim D Y 2007 Appl. Phys. Lett. 90 161107

    [14]

    Cho K H, Ahn S I, Lee S M, Choi C S, Choi K C 2010 Appl. Phys. Lett. 97 193306

    [15]
    [16]
    [17]

    Yang K Y, Choi K C, Ahn C W 2009 Appl. Phys. Lett. 94 173301

    [18]

    Yang K Y, Choi K C, Ahn C W 2009 Opt. Express 17 11495

    [19]
    [20]
    [21]

    Fujiki A, Uemura T, Zettsu N, Akai-Kasaya M, Saito A, Kuwahara Y 2010 Appl. Phys. Lett. 96 043307

    [22]

    Tagaya M, Ogawa M 2008 Phys. Chem. Chem. Phys. 10 6849

    [23]
    [24]

    Dong Y F, Li Q S 2002 Acta Phys. Sin. 51 1645 (in Chinese) [董艳锋, 李清山 2002 物理学报 51 1645]

    [25]
    [26]
    [27]

    Emmanuel F, Samuel G 2008 J. Phys. D: Appl. Phys. 41 013001

    [28]

    Tanabe K 2008 J. Phys. Chem. C 112 15721

    [29]
    [30]

    Wilson L R, Richards B S 2009 Appl. Opt. 48 212

    [31]
    [32]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [33]
    [34]
    [35]

    Bharadwaj P, Beams R, Novotny L 2011 Chem. Sci. 2 136

    [36]
    [37]

    Mattoussi H, Murata H, Merritt C D, Iizumi Y, Kido J, Kafafi Z H 1999 J. Appl. Phys. 86 2642

  • [1] 陶广益, 齐鹏飞, 戴宇琛, 石蓓蓓, 黄逸婧, 张天浩, 方哲宇. 亚波长介质光栅对单层过渡金属硫化物的发光增强. 物理学报, 2022, 71(8): 087801. doi: 10.7498/aps.71.20212358
    [2] 刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星. 纳米光学辐射传热: 从热辐射增强理论到辐射制冷应用. 物理学报, 2020, 69(3): 036501. doi: 10.7498/aps.69.20191906
    [3] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [4] 武小芳, 谢树果, 何云涛, 李丽, 李小路. 碳纳米管光学天线的有效波长和谐振特性. 物理学报, 2016, 65(9): 097801. doi: 10.7498/aps.65.097801
    [5] 赵聪, 孟庆裕, 孙文军. Eu3+掺杂CaMoO4微米荧光粉发光性质的研究. 物理学报, 2015, 64(10): 107803. doi: 10.7498/aps.64.107803
    [6] 王云, 蓝天, 李湘, 沈振民, 倪国强. 复合抛物面聚光器作为可见光通信光学天线的设计研究与性能分析. 物理学报, 2015, 64(12): 124212. doi: 10.7498/aps.64.124212
    [7] 周小东, 张少锋, 周思华. Au纳米颗粒和CdTe量子点复合体系发光增强和猝灭效应. 物理学报, 2015, 64(16): 167301. doi: 10.7498/aps.64.167301
    [8] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强. 物理学报, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [9] 任艳东, 郝淑娟, 邱忠阳. 表面等离子体增强氧化锌纳米带发光特性的研究 . 物理学报, 2013, 62(14): 147302. doi: 10.7498/aps.62.147302
    [10] 廖武刚, 曾祥斌, 文国知, 曹陈晨, 马昆鹏, 郑雅娟. 包含硅量子点的富硅SiNx 薄膜结构与发光特性. 物理学报, 2013, 62(12): 126801. doi: 10.7498/aps.62.126801
    [11] 刘智, 李亚明, 薛春来, 成步文, 王启明. 掺杂对多层Ge/Si(001)量子点光致发光的影响. 物理学报, 2013, 62(7): 076108. doi: 10.7498/aps.62.076108
    [12] 刘木林, 闵秋应, 叶志清. 硅衬底InGaN/GaN基蓝光发光二极管droop效应的研究. 物理学报, 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [13] 黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩. N型掺杂应变Ge发光性质. 物理学报, 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
    [14] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管近场增强特性的研究. 物理学报, 2012, 61(4): 047802. doi: 10.7498/aps.61.047802
    [15] 冀子武, 郑雨军, 徐现刚. 超强磁场下非掺杂ZnSe/BeTe Ⅱ型量子阱中激子和带电激子的光学特性. 物理学报, 2011, 60(4): 047805. doi: 10.7498/aps.60.047805
    [16] 冀子武, 郑雨军, 徐现刚, 鲁云. ZnSe/BeTe Ⅱ型量子阱中界面结构对发光特性的影响. 物理学报, 2010, 59(11): 7986-7990. doi: 10.7498/aps.59.7986
    [17] 李素梅, 宋淑梅, 吕英波, 王爱芳, 吴爱玲, 郑卫民. 量子限制受主的光致发光研究. 物理学报, 2009, 58(7): 4936-4940. doi: 10.7498/aps.58.4936
    [18] 冀子武, 三野弘文, 小嵨映二, 秋本良一, 嶽山正二郎. 调制n型掺杂ZnSe/BeTe Ⅱ型量子阱结构的发光特性. 物理学报, 2008, 57(5): 3260-3266. doi: 10.7498/aps.57.3260
    [19] 邢艳辉, 韩 军, 刘建平, 邓 军, 牛南辉, 沈光地. 垒掺In提高InGaN/GaN多量子阱发光特性. 物理学报, 2007, 56(12): 7295-7299. doi: 10.7498/aps.56.7295
    [20] 朱 莉, 郑厚植, 谭平恒, 周 霞, 姬 扬, 杨富华, 李桂荣, 曾宇昕. 能级填充对量子阱光学性质的影响. 物理学报, 2004, 53(12): 4334-4340. doi: 10.7498/aps.53.4334
计量
  • 文章访问数:  3558
  • PDF下载量:  684
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-10
  • 修回日期:  2014-01-12
  • 刊出日期:  2014-04-05

自组装银膜增强8-羟基喹啉铝(Alq3)光致发光的实验和理论研究

  • 1. 巢湖学院电子工程与电气自动化学院, 合肥 238000;
  • 2. 四川大学物理科学与技术学院, 成都 610064
    基金项目: 国家自然科学基金(批准号:11305111)、安徽省高校自然科学基金(批准号:KJ2013B163)、巢湖学院自然科学基金(批准号:XLZ201201)和巢湖学院博士科研启动基金(批准号:2012)资助的课题.

摘要: 实验和理论研究了不同自组装密度的银纳米颗粒膜对 8-羟基喹啉铝(Alq3)光致发光的影响. 结果表明:Alq3光致发光的表观增强和发射增强因子与银纳米颗粒膜密度呈正相关关系,最大值约为3.2 和13;理论计算表明银纳米颗粒膜对Alq3光致发光的量子效率和发射的最大增强因子约为1.4和15. 对比实验和理论结果,金属纳米颗粒膜的近场场强增强是导致Alq3光致发光发射强度增强的主要因素,且Alq3光致发光效率与Alq3相对银纳米颗粒的分布和热点区域面积覆盖率有关.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回