搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性管中泡群内气泡的非线性声响应

王成会 程建春

引用本文:
Citation:

弹性管中泡群内气泡的非线性声响应

王成会, 程建春

Nonlinear acoustical response of multibubbles in elastic tube

Wang Cheng-Hui, Cheng Jian-Chun
PDF
导出引用
  • 将弹性管壁视为膜弹性结构,得到了管径较大弹性管中泡群内气泡弱非线性振动的动力学模型. 利用逐级近似法对气泡的非线性共振频率、基频振动响应特性进行了理论分析. 结果表明:气泡共振频率主要受泡群内气泡间相互作用的影响;气泡的非线性共振频率将发生偏移,其偏移量取决于共振响应振幅;气泡的声响应区存在最大频率值;在声响应的高频率区内声响应幅值有多值性.
    Based on the hypothesis that the wall of an elastic tube can be described as a membrane-type elastic structure, the coupled oscillation in a system of bubble clusters and local position of the elastic wall is explored, and the model of the nonlinear oscillation of bubbles is developed. According to the successive approximation method, the nonlinear resonance frequencies the and forced oscillation are analyzed theoretically. Results indicate that the resonance frequency of bubbles is mainly affected by the interaction of bubbles in clusters. Furthermore, there is a maximum frequency of ultrasound that will excite vibrations of the bubbles in clusters, and the response of multi-valued amplitudes exists in the region of high frequency.
    • 基金项目: 国家自然科学基金(批准号:11074159,11174138,81127901,11174139,11204168,11374199)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074159, 11174138, 81127901, 11174139, 11204168, 11374199).
    [1]

    Yao L, Song Q, Bai W, Zhang J, Miao D, Jiang M, Wang Y, Shen z, Hu Q, Gu X, Huang M, Zheng G, Gao X, Hu B, Chen J, Chen H 2014 Biomaterials 35 3384

    [2]

    Khokhlova T D, Canney M S, Khokhlova V A, Sapozhnikov O A, Crum L A, Bailey M R 2011 J. Acoust. Soc. Am. 130 3498

    [3]

    Li T, Liu Z 2010 Medical Hypotheses 74 679

    [4]

    Cancelos S, Moraga F J, Lahey R T, Shain W, Parsons R H 2010 J. Acoust. Soc. Am. 128 2726

    [5]

    Qin S P, Ferrara K W 2007 Ultrasound Med. Biol. 33 1140

    [6]

    Miao H Y, Gracewski S M, Dalecki D 2009 J. Acoust. Soc. Am. 126 2374

    [7]

    Wang X, Chen H, Zheng Y, Ma M, Chen Y, Zhang K, Zeng D, Shi J 2013 Biomaterials 34 2057

    [8]

    Freund J B 2008 J. Acoust. Soc. Am. 123 2867

    [9]

    Gao F R, Hu Y T, Hu H P 2007 Int. J. Solids Struct. 44 7197

    [10]

    Zhen H R, Dayton P A, Caskey C, Zhao S K, Qin S P, Ferrara K W 2007 Ultrasound Med. Biol. 33 1978

    [11]

    Leighton T G, White P R, Marsden M A 1995 Acta. Acust. 3 517

    [12]

    Oguz H N, Prosperetti A 1988 J. Acoust. Soc. Am. 103 3301

    [13]

    Sassaroli E, Hynynen K 2004 J. Acoust. Soc. Am. 115 3235

    [14]

    Martynov S, Stride E, Saffari N 2009 J. Acoust. Soc. Am. 126 2963

    [15]

    Wang C H, Cheng J C 2012 Acta. Phys. Sin. 61 194303 (in Chinese)[王成会, 程建春 2012 物理学报 61 194303]

    [16]

    Wang C H, Cheng J C 2013 Acta. Phys. Sin. 62 114301 (in Chinese)[王成会, 程建春 2013 物理学报 62 114301]

    [17]

    Wang C H, Cheng J C 2013 Sci. Sin-Phys. Mech. Astron. 43 230 (in Chinese) [王成会, 程建春 2013 中国科学 43 230]

    [18]

    Jang N W, Gracewski S M, Abrahamsen B, Buttaccio T, Halm Robert, Dalecki D 2009 J. Acoust. Soc. Am. 126 EL34

    [19]

    Sadighi-Bonabi R, Rezaee N, Ebrahimi H and Mirheydari M 2010 Phys. Rev. E 82 016316

    [20]

    Rezaee N, Sadighi-Bonabi R, Mirheydari M, Ebrahimi H 2011 Chin. Phys. B 20 087804

    [21]

    Ida M 2009 Phys. Rev. E 79 016037

    [22]

    Zhang Y L, Zheng H R, Tang M X, Zhang D 2011 Chin. Phys. B 20 114302

    [23]

    Jiang L, Liu F, Chen H S, Wang J D, Chen D R 2012 Phys. Rev. E 85 036312

    [24]

    Hu J, Lin S Y, Wang C H, Li J 2013 Acta. Phys. Sin. 62 134303 (in Chinese)[胡静, 林书玉, 王成会, 李锦 2013 物理学报 62 134303]

    [25]

    Wang C H, Cheng J C 2013 Chin. Phys. B 22 014304

    [26]

    An Y 2012 Phys. Rev. E 85 016305

    [27]

    An Y 2011 Phys. Rev. E 84 066313

    [28]

    Martynov S, Stride E, Saffari N 2009 J. Acoust. Soc. Am. 126 2963

    [29]

    Landau L D, Lifshitz E M 1976 Mechanics (Third Edition) (London: Pergamon Press) p58

    [30]

    Chen H, Kreider A, Brayman A A, Bailey M R, Matula T J 2011 Phys. Rev. L 106 034301

  • [1]

    Yao L, Song Q, Bai W, Zhang J, Miao D, Jiang M, Wang Y, Shen z, Hu Q, Gu X, Huang M, Zheng G, Gao X, Hu B, Chen J, Chen H 2014 Biomaterials 35 3384

    [2]

    Khokhlova T D, Canney M S, Khokhlova V A, Sapozhnikov O A, Crum L A, Bailey M R 2011 J. Acoust. Soc. Am. 130 3498

    [3]

    Li T, Liu Z 2010 Medical Hypotheses 74 679

    [4]

    Cancelos S, Moraga F J, Lahey R T, Shain W, Parsons R H 2010 J. Acoust. Soc. Am. 128 2726

    [5]

    Qin S P, Ferrara K W 2007 Ultrasound Med. Biol. 33 1140

    [6]

    Miao H Y, Gracewski S M, Dalecki D 2009 J. Acoust. Soc. Am. 126 2374

    [7]

    Wang X, Chen H, Zheng Y, Ma M, Chen Y, Zhang K, Zeng D, Shi J 2013 Biomaterials 34 2057

    [8]

    Freund J B 2008 J. Acoust. Soc. Am. 123 2867

    [9]

    Gao F R, Hu Y T, Hu H P 2007 Int. J. Solids Struct. 44 7197

    [10]

    Zhen H R, Dayton P A, Caskey C, Zhao S K, Qin S P, Ferrara K W 2007 Ultrasound Med. Biol. 33 1978

    [11]

    Leighton T G, White P R, Marsden M A 1995 Acta. Acust. 3 517

    [12]

    Oguz H N, Prosperetti A 1988 J. Acoust. Soc. Am. 103 3301

    [13]

    Sassaroli E, Hynynen K 2004 J. Acoust. Soc. Am. 115 3235

    [14]

    Martynov S, Stride E, Saffari N 2009 J. Acoust. Soc. Am. 126 2963

    [15]

    Wang C H, Cheng J C 2012 Acta. Phys. Sin. 61 194303 (in Chinese)[王成会, 程建春 2012 物理学报 61 194303]

    [16]

    Wang C H, Cheng J C 2013 Acta. Phys. Sin. 62 114301 (in Chinese)[王成会, 程建春 2013 物理学报 62 114301]

    [17]

    Wang C H, Cheng J C 2013 Sci. Sin-Phys. Mech. Astron. 43 230 (in Chinese) [王成会, 程建春 2013 中国科学 43 230]

    [18]

    Jang N W, Gracewski S M, Abrahamsen B, Buttaccio T, Halm Robert, Dalecki D 2009 J. Acoust. Soc. Am. 126 EL34

    [19]

    Sadighi-Bonabi R, Rezaee N, Ebrahimi H and Mirheydari M 2010 Phys. Rev. E 82 016316

    [20]

    Rezaee N, Sadighi-Bonabi R, Mirheydari M, Ebrahimi H 2011 Chin. Phys. B 20 087804

    [21]

    Ida M 2009 Phys. Rev. E 79 016037

    [22]

    Zhang Y L, Zheng H R, Tang M X, Zhang D 2011 Chin. Phys. B 20 114302

    [23]

    Jiang L, Liu F, Chen H S, Wang J D, Chen D R 2012 Phys. Rev. E 85 036312

    [24]

    Hu J, Lin S Y, Wang C H, Li J 2013 Acta. Phys. Sin. 62 134303 (in Chinese)[胡静, 林书玉, 王成会, 李锦 2013 物理学报 62 134303]

    [25]

    Wang C H, Cheng J C 2013 Chin. Phys. B 22 014304

    [26]

    An Y 2012 Phys. Rev. E 85 016305

    [27]

    An Y 2011 Phys. Rev. E 84 066313

    [28]

    Martynov S, Stride E, Saffari N 2009 J. Acoust. Soc. Am. 126 2963

    [29]

    Landau L D, Lifshitz E M 1976 Mechanics (Third Edition) (London: Pergamon Press) p58

    [30]

    Chen H, Kreider A, Brayman A A, Bailey M R, Matula T J 2011 Phys. Rev. L 106 034301

  • [1] 苑涛, 戴汉宁, 陈宇翱. 超冷原子动量光晶格中的非线性拓扑泵浦. 物理学报, 2023, 72(16): 160302. doi: 10.7498/aps.72.20230740
    [2] 屈广宁, 凡凤仙, 张斯宏, 苏明旭. 驻波声场中单分散细颗粒的相互作用特性. 物理学报, 2020, 69(6): 064704. doi: 10.7498/aps.69.20191681
    [3] 陈恒杰, 薛航, 李邵雄, 王镇. 一种通过约瑟夫森结非线性频率响应确定微波耗散的方法. 物理学报, 2019, 68(11): 118501. doi: 10.7498/aps.68.20190167
    [4] 莫润阳, 王成会, 胡静, 陈时. 双气泡振子系统的非线性声响应特性分析. 物理学报, 2019, 68(14): 144302. doi: 10.7498/aps.68.20190408
    [5] 席发元, 吕会议. 不同 Ep/q 值的离子与氧化铝毛细孔的相互作用. 物理学报, 2013, 62(1): 016104. doi: 10.7498/aps.62.016104
    [6] 王成会, 程建春. 弹性微管内气泡的非线性受迫振动. 物理学报, 2013, 62(11): 114301. doi: 10.7498/aps.62.114301
    [7] 马松华, 方建平. 扩展的(2+1)维浅水波方程的尖峰孤子解及其相互作用. 物理学报, 2012, 61(18): 180505. doi: 10.7498/aps.61.180505
    [8] 满达夫, 那仁满都拉. 具有能量输入/输出的固体层中孤立波的传播及相互作用特性. 物理学报, 2010, 59(1): 60-66. doi: 10.7498/aps.59.60
    [9] 宗丰德, 张解放. 装载于外势场中的玻色-爱因斯坦凝聚N-孤子间的相互作用. 物理学报, 2008, 57(5): 2658-2668. doi: 10.7498/aps.57.2658
    [10] 曹龙贵, 陆大全, 胡 巍, 杨平保, 朱叶青, 郭 旗. 亚强非局域空间光孤子的相互作用. 物理学报, 2008, 57(10): 6365-6372. doi: 10.7498/aps.57.6365
    [11] 黎扬钢, 佘卫龙, 王红成. 光致异构聚合物中相互作用光学空间孤子对的垂直光调控. 物理学报, 2007, 56(4): 2229-2236. doi: 10.7498/aps.56.2229
    [12] 马松华, 强继业, 方建平. (2+1)维Boiti-Leon-Pempinelli系统的混沌行为及孤子间的相互作用. 物理学报, 2007, 56(2): 620-626. doi: 10.7498/aps.56.620
    [13] 刘志明, 崔 田, 马琰铭, 刘冰冰, 邹广田. Nb2H 的电子结构和相互作用. 物理学报, 2007, 56(8): 4877-4883. doi: 10.7498/aps.56.4877
    [14] 袁都奇. 相互作用对玻色气体热力学性质及稳定性的影响. 物理学报, 2006, 55(4): 1634-1638. doi: 10.7498/aps.55.1634
    [15] 黄晓菁, 何素贞, 吴晨旭. 金属纳米结构表面吸附的CO分子在外电场中的相互作用. 物理学报, 2006, 55(5): 2454-2458. doi: 10.7498/aps.55.2454
    [16] 门福殿. 弱磁场中弱相互作用费米气体的热力学性质. 物理学报, 2006, 55(4): 1622-1627. doi: 10.7498/aps.55.1622
    [17] 宋克慧. 利用Λ型原子与双模腔场的相互作用进行量子信息处理. 物理学报, 2005, 54(10): 4730-4735. doi: 10.7498/aps.54.4730
    [18] 苏国珍, 陈丽璇. 弱相互作用费米气体的热力学性质. 物理学报, 2004, 53(4): 984-990. doi: 10.7498/aps.53.984
    [19] 江德生, 欧阳世根, 佘卫龙. 暗-暗与亮-暗光伏孤子相互作用. 物理学报, 2004, 53(11): 3777-3785. doi: 10.7498/aps.53.3777
    [20] 侯璐景, 王友年. 尘埃颗粒在射频等离子体鞘层中的非线性共振现象的理论研究. 物理学报, 2003, 52(2): 434-441. doi: 10.7498/aps.52.434
计量
  • 文章访问数:  5428
  • PDF下载量:  508
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-23
  • 修回日期:  2014-02-21
  • 刊出日期:  2014-07-05

/

返回文章
返回