-
利用无中心的Virasoro型对称李代数σ(f1(t)),σ(f2(t)) =σ(f1f2-f2f1)的每一个实现,能得到各种高维模型.通过一些特殊实现,给出了具有Virasoro型对称代数意义下的许多(3+1)维可积模型Using everyone of the realization of the centerless Virasoro type symmetry algebra, σ(f1(t)),σ(f2(t)) =σ(f1f2-f2f1), we can get various higher dimensional models. By means of a concrete realization, many (3+1)-dimensional equations which possess Kac-Moody-Virasoro type infinite di-mensional symmetry algebra are obtained.







下载: