搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究

吕瑾 杨丽君 王艳芳 马文瑾

引用本文:
Citation:

Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究

吕瑾, 杨丽君, 王艳芳, 马文瑾

Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters

Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin
PDF
导出引用
  • 采用密度泛函理论的B3LYP方法,在6-311G**水平 上对Al2Sn (n=210)团簇的几何结构和电子结构进行了理论计算. 讨论了铝硫二元离子混合团簇基态结构的变化规律、电荷转移和成键特征. 结果表明,在S簇中掺杂Al原子会使Sn结构发生明显改变. Al2Sn团簇基态结构是以Al2S2四元环为骨架或桥梁,分别与S原子或S簇相结合形成单环到三环的平面和立体结构. 结构中化学键键型和成键数目影响团簇的稳定性. 通过对基态结构的解离能和能量二次差分值的分析得到了Al2Sn团簇的稳定性信息.
    The geometric configurations and electronic structures of the Al2Sn (n=2-10) clusters are calculated by the B3LYP (density functional theory) method at 6-311G** level. The variations of the ground state structure, charge transfer and bonding characteristic of the aluminum-sulfur doped clusters are discussed in detail. The results show that the structures of pure Sn clusters are fundamentally changed due to the doping of the Al atoms. Our work exhibits that the all the ground states of Al2Sn clusters share the same four-member Al2S2 ring, and from single ring to three rings plane and three-dimensional structure structures are formed by inserting one S atom or S clusters. The stability of cluster structure is influenced by both the chemical bond structure and number. The stability information of Al2Sn clusters is obtained by analyzing the dissociation energies and the second-order difference energies of the ground state structures.
    • 基金项目: 国家自然科学基金青年科学基金(批准号:21301112)、教育部博士点基金(批准号:20131404120001)和山西省自然科学基金(批准号:2012011009-4,2012021020-1)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 21301112), the Ph. D. Program Foundation of Ministry of Education of China (Grant No. 20131404120001), and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2012011009-4, 2012021020-1).
    [1]

    Cui M, Feng J K, Ge M F, Wang S F, Sun J Z, Liu J B, Gao Z, Kong F A 1999 Acta Chim. Sin. 57 1062 (in Chinese) [崔勐, 封继康, 葛茂发, 王素凡, 孙家钟, 刘剑波, 高振, 孔繁敖 1999 化学学报 57 1062]

    [2]

    Zakrzewski V G, Niessen W V 1994 Theor. Chim. Acta 88 75

    [3]
    [4]

    Suontamo R J, Laitinen R S, Pakkanen T A 1994 J. Mol. Struct.-Theochem. 313 189

    [5]
    [6]

    Chen M D, Liu M L, Luo H B, Zhang Q E, Au C T 2001 J. Mol. Struct.-Theochem. 548 133

    [7]
    [8]
    [9]

    Bai Y L, Chen X R, Yang X D, Lu P F 2003 Acta Phys. Chim. Sin. 19 1102

    [10]

    Chen M D, Liu M H, Liu J W, Jiao Y C, Zhang Q E 2002 Chin. J. Chem. Phys. 15 357 (in Chinese) [陈明旦, 刘明宏, 刘建文, 焦毓才, 张乾二 2002 化学物理学报 15 357]

    [11]
    [12]

    Chen M D, Liu M H, Liu J W, Jiao Y C, Zhang Q E 2002 Chin. J. Struct. Chem. 21 557 (in Chinese) [陈明旦, 刘明宏, 刘建文, 焦毓才, 张乾二 2002 结构化学 21 557]

    [13]
    [14]

    Chen M D, Liu M H, Luo H B, Qiu Z J, Zhang Q E 2001 Chin. J. Struct. Chem. 20 399 (in Chinese) [陈明旦, 刘明宏, 罗海彬, 邱志军, 张乾二 2001 结构化学 20 399]

    [15]
    [16]

    Zhao Y C, Yuan J Y, Zhang Z G, Xu H G, Zheng W J 2011 Dalton Trans. 40 2502

    [17]
    [18]

    Liang B Y, Wang X F, Andrews L 2009 J. Phys. Chem. A 113 5375

    [19]
    [20]

    Liang B Y, Wang X F, Andrews L 2009 J. Phys. Chem. A 113 3336

    [21]
    [22]
    [23]

    Feng X Q, Feng X H, Jiang Z Y 2010 Acta Phys. Sin. 59 7838 (in Chinese) [冯选旗, 冯雪红, 姜振益 2010 物理学报 59 7838]

    [24]
    [25]

    Guo L 2010 J. Alloys. Compd. 498 121

    [26]

    Feng X J, Luo Y H 2007 J. Phys. Chem. A 111 2420

    [27]
    [28]
    [29]

    Li X, Wang L S, Boldyrev A I, Simons J 1999 J. Am. Chem. Soc. 121 6033

    [30]

    Averkiev B B, Boldyrev A I, Li X, Wang L S 2007 J. Phys. Chem. A 111 34

    [31]
    [32]
    [33]

    Averkiev B B, Call S, Boldyrev A I, Wang L M, Huang W, Wang L S 2008 J. Phys. Chem. A 112 1873

    [34]
    [35]

    Yang P, Ge J H, Jiang Z Y 2007 Chin. Phys. 16 1014

    [36]

    Gu J B, Yang X D, Wang H Q, Li H F 2012 Chin. Phys. B 21 043102

    [37]
    [38]
    [39]

    Nakajima A, Taguwa T, Nakao K, Hoshino K, Iwata S, Kaya K 1995 J. Chem. Phys. 102 660

    [40]

    Nakajima A, Taguwa T, Nakao K, Hoshino K, Iwata S, Kaya K 1996 Surf. Rev. Lett. 3 417

    [41]
    [42]
    [43]

    Nakajima A, Zhang N, Kawamata H, Hayase T, Nakao K, Kaya K 1995 Chem. Phys. Lett. 241 295

    [44]

    Zhong M M, Kuang X Y, Wang Z H, Shao P, Ding L P 2013 J. Mol. Model. 19 263

    [45]
    [46]
    [47]

    Zhang N, Shi Y, Gao Z, Kong F A, Zhu Q H 1994 J. Chem. Phys. 101 1219

    [48]

    Jensen J O 2003 J. Mol. Struct.-Theochem. 664 37

    [49]
    [50]

    Jensen J O 2004 Spectrochim. Acta Part A 60 2547

    [51]
    [52]
    [53]

    Zhang Z G, Xu H G, Feng Y, Zheng W J 2010 J. Chem. Phys. 132 161103

    [54]

    Li T X, Wang L, Wang F, Chen J, Jiang Z Y, Li L S 2011 Chin. Phys. B 20 033101

    [55]
    [56]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [57]
    [58]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [59]
    [60]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C J, Pople A 2004 Gaussian 03 Revision D.01 (Wallingford: Gaussian Inc.)

    [61]
    [62]
    [63]

    Guo L, Wu H S 2007 Eur. Phys. J. D 42 259

    [64]
    [65]

    Chen X H, Gao T, Luo S Z, Ma M Z, Xie A D, Zhu Z H 2006 Acta Phys. Sin. 55 1113 (in Chinese) [谌晓洪, 高涛, 罗顺忠, 马美仲, 谢安东, 朱正和 2006 物理学报 55 1113]

    [66]
    [67]

    Xu W G, Zhang Y C, Zhai L 2009 Sci. China B: Chem. 52 2237

    [68]
    [69]

    John A W H, Dorothea K S, Frank H S 1996 J. Phys. Chem. 100 1098

    [70]

    Zhao G F, Zhi L L, Guo L J, Zeng Z 2007 J. Chem. Phys. 127 234705

    [71]
    [72]

    Gutirrez G, Johansson B 2002 Phys. Rev. B 65 104202

    [73]
    [74]
    [75]

    Bonacic K V, Fantucci P, Koutecky J 1991 Chem. Rev. 91 1035

    [76]

    Wang J L, Wang G H, Zhao J J 2001 J. Phys. Rev. B 64 205411

    [77]
  • [1]

    Cui M, Feng J K, Ge M F, Wang S F, Sun J Z, Liu J B, Gao Z, Kong F A 1999 Acta Chim. Sin. 57 1062 (in Chinese) [崔勐, 封继康, 葛茂发, 王素凡, 孙家钟, 刘剑波, 高振, 孔繁敖 1999 化学学报 57 1062]

    [2]

    Zakrzewski V G, Niessen W V 1994 Theor. Chim. Acta 88 75

    [3]
    [4]

    Suontamo R J, Laitinen R S, Pakkanen T A 1994 J. Mol. Struct.-Theochem. 313 189

    [5]
    [6]

    Chen M D, Liu M L, Luo H B, Zhang Q E, Au C T 2001 J. Mol. Struct.-Theochem. 548 133

    [7]
    [8]
    [9]

    Bai Y L, Chen X R, Yang X D, Lu P F 2003 Acta Phys. Chim. Sin. 19 1102

    [10]

    Chen M D, Liu M H, Liu J W, Jiao Y C, Zhang Q E 2002 Chin. J. Chem. Phys. 15 357 (in Chinese) [陈明旦, 刘明宏, 刘建文, 焦毓才, 张乾二 2002 化学物理学报 15 357]

    [11]
    [12]

    Chen M D, Liu M H, Liu J W, Jiao Y C, Zhang Q E 2002 Chin. J. Struct. Chem. 21 557 (in Chinese) [陈明旦, 刘明宏, 刘建文, 焦毓才, 张乾二 2002 结构化学 21 557]

    [13]
    [14]

    Chen M D, Liu M H, Luo H B, Qiu Z J, Zhang Q E 2001 Chin. J. Struct. Chem. 20 399 (in Chinese) [陈明旦, 刘明宏, 罗海彬, 邱志军, 张乾二 2001 结构化学 20 399]

    [15]
    [16]

    Zhao Y C, Yuan J Y, Zhang Z G, Xu H G, Zheng W J 2011 Dalton Trans. 40 2502

    [17]
    [18]

    Liang B Y, Wang X F, Andrews L 2009 J. Phys. Chem. A 113 5375

    [19]
    [20]

    Liang B Y, Wang X F, Andrews L 2009 J. Phys. Chem. A 113 3336

    [21]
    [22]
    [23]

    Feng X Q, Feng X H, Jiang Z Y 2010 Acta Phys. Sin. 59 7838 (in Chinese) [冯选旗, 冯雪红, 姜振益 2010 物理学报 59 7838]

    [24]
    [25]

    Guo L 2010 J. Alloys. Compd. 498 121

    [26]

    Feng X J, Luo Y H 2007 J. Phys. Chem. A 111 2420

    [27]
    [28]
    [29]

    Li X, Wang L S, Boldyrev A I, Simons J 1999 J. Am. Chem. Soc. 121 6033

    [30]

    Averkiev B B, Boldyrev A I, Li X, Wang L S 2007 J. Phys. Chem. A 111 34

    [31]
    [32]
    [33]

    Averkiev B B, Call S, Boldyrev A I, Wang L M, Huang W, Wang L S 2008 J. Phys. Chem. A 112 1873

    [34]
    [35]

    Yang P, Ge J H, Jiang Z Y 2007 Chin. Phys. 16 1014

    [36]

    Gu J B, Yang X D, Wang H Q, Li H F 2012 Chin. Phys. B 21 043102

    [37]
    [38]
    [39]

    Nakajima A, Taguwa T, Nakao K, Hoshino K, Iwata S, Kaya K 1995 J. Chem. Phys. 102 660

    [40]

    Nakajima A, Taguwa T, Nakao K, Hoshino K, Iwata S, Kaya K 1996 Surf. Rev. Lett. 3 417

    [41]
    [42]
    [43]

    Nakajima A, Zhang N, Kawamata H, Hayase T, Nakao K, Kaya K 1995 Chem. Phys. Lett. 241 295

    [44]

    Zhong M M, Kuang X Y, Wang Z H, Shao P, Ding L P 2013 J. Mol. Model. 19 263

    [45]
    [46]
    [47]

    Zhang N, Shi Y, Gao Z, Kong F A, Zhu Q H 1994 J. Chem. Phys. 101 1219

    [48]

    Jensen J O 2003 J. Mol. Struct.-Theochem. 664 37

    [49]
    [50]

    Jensen J O 2004 Spectrochim. Acta Part A 60 2547

    [51]
    [52]
    [53]

    Zhang Z G, Xu H G, Feng Y, Zheng W J 2010 J. Chem. Phys. 132 161103

    [54]

    Li T X, Wang L, Wang F, Chen J, Jiang Z Y, Li L S 2011 Chin. Phys. B 20 033101

    [55]
    [56]

    Becke A D 1993 J. Chem. Phys. 98 5648

    [57]
    [58]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [59]
    [60]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C J, Pople A 2004 Gaussian 03 Revision D.01 (Wallingford: Gaussian Inc.)

    [61]
    [62]
    [63]

    Guo L, Wu H S 2007 Eur. Phys. J. D 42 259

    [64]
    [65]

    Chen X H, Gao T, Luo S Z, Ma M Z, Xie A D, Zhu Z H 2006 Acta Phys. Sin. 55 1113 (in Chinese) [谌晓洪, 高涛, 罗顺忠, 马美仲, 谢安东, 朱正和 2006 物理学报 55 1113]

    [66]
    [67]

    Xu W G, Zhang Y C, Zhai L 2009 Sci. China B: Chem. 52 2237

    [68]
    [69]

    John A W H, Dorothea K S, Frank H S 1996 J. Phys. Chem. 100 1098

    [70]

    Zhao G F, Zhi L L, Guo L J, Zeng Z 2007 J. Chem. Phys. 127 234705

    [71]
    [72]

    Gutirrez G, Johansson B 2002 Phys. Rev. B 65 104202

    [73]
    [74]
    [75]

    Bonacic K V, Fantucci P, Koutecky J 1991 Chem. Rev. 91 1035

    [76]

    Wang J L, Wang G H, Zhao J J 2001 J. Phys. Rev. B 64 205411

    [77]
  • [1] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [2] 杨雪, 丁大军, 胡湛, 赵国明. 中性和阳离子丁酮团簇的结构及稳定性的理论研究. 物理学报, 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [3] 王转玉, 康伟丽, 贾建峰, 武海顺. Ti2Bn(n=1–10)团簇的结构与稳定性:基于从头算的研究. 物理学报, 2014, 63(23): 233102. doi: 10.7498/aps.63.233102
    [4] 姚建刚, 宫宝安, 王渊旭. NO在Yn(n=1–12)团簇表面的解离性吸附. 物理学报, 2013, 62(24): 243601. doi: 10.7498/aps.62.243601
    [5] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究. 物理学报, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [6] 陈宣, 袁勇波, 邓开明, 肖传云, 陆瑞锋, 阚二军. MnxSny(x=2,3,4; y=18,24,30)团簇几何结构的密度泛函研究. 物理学报, 2012, 61(8): 083601. doi: 10.7498/aps.61.083601
    [7] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [8] 金蓉, 谌晓洪. VOxH2O (x= 15)团簇的结构及稳定性研究. 物理学报, 2012, 61(9): 093103. doi: 10.7498/aps.61.093103
    [9] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [10] 张秀荣, 吴礼清, 康张李, 唐会帅. OsnN0,±(n=1—6)团簇几何结构与稳定性的理论研究. 物理学报, 2011, 60(5): 053601. doi: 10.7498/aps.60.053601
    [11] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [12] 顾娟, 王山鹰, 苟秉聪. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究. 物理学报, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [13] 齐凯天, 杨传路, 李兵, 张岩, 盛勇. TinLa(n=1—7)的密度泛函研究. 物理学报, 2009, 58(10): 6956-6961. doi: 10.7498/aps.58.6956
    [14] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [15] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究. 物理学报, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [16] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [17] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性. 物理学报, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [18] 雷雪玲, 祝恒江, 葛桂贤, 王先明, 罗有华. 密度泛函理论研究BnNi(n=6—12)团簇的结构和磁性. 物理学报, 2008, 57(9): 5491-5499. doi: 10.7498/aps.57.5491
    [19] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] 杨建宋, 李宝兴. 砷化镓离子团簇的稳定性研究. 物理学报, 2006, 55(12): 6562-6569. doi: 10.7498/aps.55.6562
计量
  • 文章访问数:  3485
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-26
  • 修回日期:  2014-04-18
  • 刊出日期:  2014-08-05

Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究

  • 1. 山西师范大学化学与材料科学学院, 临汾 041004
    基金项目: 国家自然科学基金青年科学基金(批准号:21301112)、教育部博士点基金(批准号:20131404120001)和山西省自然科学基金(批准号:2012011009-4,2012021020-1)资助的课题.

摘要: 采用密度泛函理论的B3LYP方法,在6-311G**水平 上对Al2Sn (n=210)团簇的几何结构和电子结构进行了理论计算. 讨论了铝硫二元离子混合团簇基态结构的变化规律、电荷转移和成键特征. 结果表明,在S簇中掺杂Al原子会使Sn结构发生明显改变. Al2Sn团簇基态结构是以Al2S2四元环为骨架或桥梁,分别与S原子或S簇相结合形成单环到三环的平面和立体结构. 结构中化学键键型和成键数目影响团簇的稳定性. 通过对基态结构的解离能和能量二次差分值的分析得到了Al2Sn团簇的稳定性信息.

English Abstract

参考文献 (77)

目录

    /

    返回文章
    返回