搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC/C界面辐照性能的分子动力学研究

王成龙 王庆宇 张跃 李忠宇 洪兵 苏折 董良

引用本文:
Citation:

SiC/C界面辐照性能的分子动力学研究

王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良

Molecular dynamics study of cascade damage at SiC/C interface

Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang
PDF
导出引用
  • 本文通过分子动力学模拟的方法,研究了5种含不同空间结构的SiC/C界面的材料受辐照后的缺陷分布随时间以及PKA位置的变化关系,并与单质SiC中缺陷分布情况进行对比. 利用径向分布函数分析了辐照对界面原子排列情况的影响. 研究结果表明,SiC/C界面的抗辐照能力明显低于SiC内部,不同的空间结构对界面缺陷数量存在一定影响. 由径向分布函数推得界面区域石墨原子密度高则界面原子排列情况受辐照影响越大.
    Continuous silicon carbide (SiC) fiber-reinforced SiC (SiCf/SiC) composites have been considered to be used as structural materials in advanced nuclear reactors for its excellent properties. Their mechanical properties have been greatly improved during the last decade. But the radiation damage at the SiC and pyrolytic carbon interface would degrade the mechanical integrity of the composites, while the mechanism of degradation is remaining unknown at present. In this study, molecular dynamics simulations have been used to model the irradiation cascade of five SiC/C composite systems. According to the angle between the graphite layer and the interface, the models are marked as M0, M28, M56, M77 and M90, in which the number represents the angle. Forty primary knock-on atoms (PKAs) at different positions in each composite system are used to bombard the interface. In each run a collision cascade may be initiated by giving one of the 40 atoms 1.5 keV kinetic energy. The relationships between the distribution of defects and simulation time and PKA position are systematically studied, and compared with those in bulk SiC, which are marked as MW. Results show that the radiation damage resistance of SiC/C interface is significantly lower than bulk SiC, and the interface structure has an impact on the number of defects. Radial distribution function (RDF) is employed to examine the coordination of interfacial atoms. The results show that the higher the density of graphite atoms in the interface, the larger impact the irradiation on the RDF and coordination.
    • 基金项目: 哈尔滨工程大学中央高校基本科研业务费项目(批准号:HEUCFT1103,HEUCF131507)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. HEUCFT1103, HEUCF131507).
    [1]
    [2]

    Yueh K, Carpenter D, Feinroth H 2010 Nucl. Eng. Intern. 55 14

    [3]
    [4]

    Snead L L, Katoh Y, Windes W, Smit K 2008 Trans. Ameri. Nucl. Soc. 98 1019

    [5]

    Forsberg C W, Peterson P F, Kochendarfer R A, Areva N P 2008 In Proc. 2008 International Congress on Advances in Nuclear Power Plants, Anaheim, June 8-12, 2008, p8026

    [6]
    [7]

    Charpentier L, Dawi K, Balat-Pichelin M, Bêche E, Audubert F 2012 Corros. Sci. 59 127

    [8]
    [9]
    [10]

    Giancarli L, Golfier H, Nishio S, Raffray R, Wong C, Yamada R 2002 Fusion Eng. Design 61 307

    [11]

    Kohyama A, Konishi S, Kimura A 2005 Nucl. Eng. Des. 37 423

    [12]
    [13]

    Li W T 2007 Introduction of nuclear material(Beijing: Chemical Industry Press) p446 (in Chinese) [李文埮 2007 核材料导论 (北京: 化学工业出版社) 第446 页]

    [14]
    [15]

    Nozawa T, Ozawa K, Kondo S, Hinoki T, Katoh Y, Snead L L, Kohyama A 2005 J. ASTM Int. 2 JAI12884

    [16]
    [17]

    Nozawa T, Katoh Y, Snead L L 2007 J. Nucl. Mater. 367 685

    [18]
    [19]
    [20]

    Bai X M, Voter A F, Hoagland R G, Nastasi M, Uberuaga B P 2010 Science 327 1631

    [21]
    [22]

    Ackland G 2010 Science 327 1587

    [23]

    Wallace J, Chen D, Wang J, Shao L 2013 Nucl. Instrum. Methods. Res. Sect. B 307 81

    [24]
    [25]
    [26]

    Li W N, Xue J M, Wang J X, Duan H L 2014 Chin. Phys. B 23 036101

    [27]
    [28]

    Katoh Y, Ozawa K, Shih C, Nozawa T, Shinavski R J, Hasegawa A, Snead L L 2014 J. Nucl. Mater. 448 448

    [29]
    [30]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [31]

    Zeigler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids (Vol.1) (New York: Pergamon Press)

    [32]
    [33]
    [34]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [35]
    [36]

    Plimpton S 1995 J. Comp. Phys. 7 1

    [37]
    [38]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33

    [39]

    Li J 2003 Model. Simul. Mater. Sci. Eng. 11 173

    [40]
    [41]

    Alexander S 2010 Model. Simul. Mater. Sci. Eng. 18 015012

    [42]
    [43]

    Wang J W, Shang X C, Lv G C 2011 Mater. Eng. 10 005 (in Chinese) [王建伟, 尚新春, 吕国才 2011 材料工程 10 005]

    [44]
    [45]

    Yang L, Zu X T, Xiao H Y, Yang S Z, Liu K Z, Gao F 2005 Acta Phys. Sin. 54 4857 (in Chinese) [杨莉, 祖小涛, 肖海燕, 杨树政, 刘柯钊, Gao F 2005 物理学报 54 4857]

    [46]
    [47]

    Farrell D E 2008 Ph. D. Dissertation (Evanstone: Northwestern University) (in USA)

    [48]
    [49]
    [50]

    Liu H M, Fan Y S, Tian S H, Zhou W, Chen X 2012 Acta Phys. Sin. 61 062801 (in Chinese) [刘华敏, 范永胜, 田时海, 周维, 陈旭 2012 物理学报 61 062801]

    [51]

    Devanathan R, Rubia D T, Weber W J 1998 J. Nucl. Mater. 253 47

    [52]
    [53]

    Swaminathan N, Wojdyr M, Morgan D D, Szlufarska I 2012 J. Appl. Phys. 111 054918

    [54]
    [55]

    Naslain R R, Pailler R J F, Lamon J L 2010 Int. J. Appl. Ceram. Technol. 7 263

  • [1]
    [2]

    Yueh K, Carpenter D, Feinroth H 2010 Nucl. Eng. Intern. 55 14

    [3]
    [4]

    Snead L L, Katoh Y, Windes W, Smit K 2008 Trans. Ameri. Nucl. Soc. 98 1019

    [5]

    Forsberg C W, Peterson P F, Kochendarfer R A, Areva N P 2008 In Proc. 2008 International Congress on Advances in Nuclear Power Plants, Anaheim, June 8-12, 2008, p8026

    [6]
    [7]

    Charpentier L, Dawi K, Balat-Pichelin M, Bêche E, Audubert F 2012 Corros. Sci. 59 127

    [8]
    [9]
    [10]

    Giancarli L, Golfier H, Nishio S, Raffray R, Wong C, Yamada R 2002 Fusion Eng. Design 61 307

    [11]

    Kohyama A, Konishi S, Kimura A 2005 Nucl. Eng. Des. 37 423

    [12]
    [13]

    Li W T 2007 Introduction of nuclear material(Beijing: Chemical Industry Press) p446 (in Chinese) [李文埮 2007 核材料导论 (北京: 化学工业出版社) 第446 页]

    [14]
    [15]

    Nozawa T, Ozawa K, Kondo S, Hinoki T, Katoh Y, Snead L L, Kohyama A 2005 J. ASTM Int. 2 JAI12884

    [16]
    [17]

    Nozawa T, Katoh Y, Snead L L 2007 J. Nucl. Mater. 367 685

    [18]
    [19]
    [20]

    Bai X M, Voter A F, Hoagland R G, Nastasi M, Uberuaga B P 2010 Science 327 1631

    [21]
    [22]

    Ackland G 2010 Science 327 1587

    [23]

    Wallace J, Chen D, Wang J, Shao L 2013 Nucl. Instrum. Methods. Res. Sect. B 307 81

    [24]
    [25]
    [26]

    Li W N, Xue J M, Wang J X, Duan H L 2014 Chin. Phys. B 23 036101

    [27]
    [28]

    Katoh Y, Ozawa K, Shih C, Nozawa T, Shinavski R J, Hasegawa A, Snead L L 2014 J. Nucl. Mater. 448 448

    [29]
    [30]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [31]

    Zeigler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids (Vol.1) (New York: Pergamon Press)

    [32]
    [33]
    [34]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [35]
    [36]

    Plimpton S 1995 J. Comp. Phys. 7 1

    [37]
    [38]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33

    [39]

    Li J 2003 Model. Simul. Mater. Sci. Eng. 11 173

    [40]
    [41]

    Alexander S 2010 Model. Simul. Mater. Sci. Eng. 18 015012

    [42]
    [43]

    Wang J W, Shang X C, Lv G C 2011 Mater. Eng. 10 005 (in Chinese) [王建伟, 尚新春, 吕国才 2011 材料工程 10 005]

    [44]
    [45]

    Yang L, Zu X T, Xiao H Y, Yang S Z, Liu K Z, Gao F 2005 Acta Phys. Sin. 54 4857 (in Chinese) [杨莉, 祖小涛, 肖海燕, 杨树政, 刘柯钊, Gao F 2005 物理学报 54 4857]

    [46]
    [47]

    Farrell D E 2008 Ph. D. Dissertation (Evanstone: Northwestern University) (in USA)

    [48]
    [49]
    [50]

    Liu H M, Fan Y S, Tian S H, Zhou W, Chen X 2012 Acta Phys. Sin. 61 062801 (in Chinese) [刘华敏, 范永胜, 田时海, 周维, 陈旭 2012 物理学报 61 062801]

    [51]

    Devanathan R, Rubia D T, Weber W J 1998 J. Nucl. Mater. 253 47

    [52]
    [53]

    Swaminathan N, Wojdyr M, Morgan D D, Szlufarska I 2012 J. Appl. Phys. 111 054918

    [54]
    [55]

    Naslain R R, Pailler R J F, Lamon J L 2010 Int. J. Appl. Ceram. Technol. 7 263

  • [1] 李奋飞, 周晓燕, 张魁宝, 石兆华, 陈进湛, 叶鑫, 吴卫东, 李波. 中子辐照对掺镱光纤材料光学特性的影响. 物理学报, 2021, 70(19): 190201. doi: 10.7498/aps.70.20210083
    [2] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [3] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究. 物理学报, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [4] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [5] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应. 物理学报, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [6] 李丽丽, Xia Zhen-Hai, 杨延清, 韩明. SiC纳米纤维/C/SiC复合材料拉伸行为的分子动力学研究. 物理学报, 2015, 64(11): 117101. doi: 10.7498/aps.64.117101
    [7] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [8] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究. 物理学报, 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [9] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [10] 卢喜瑞, 崔春龙, 张东, 陈梦君, 杨岩凯. 锆英石的抗γ射线辐照能力和Rietveld结构精修. 物理学报, 2011, 60(7): 078901. doi: 10.7498/aps.60.078901
    [11] 肖志强, 李蕾蕾, 张波, 徐静, 陈正才. 基于SOI技术的单层多晶EEPROM和SONOS EEPROM抗总剂量辐照特性研究. 物理学报, 2011, 60(2): 028502. doi: 10.7498/aps.60.028502
    [12] 李蕾蕾, 于宗光, 肖志强, 周昕杰. SOI SONOS EEPROM 总剂量辐照阈值退化机理研究. 物理学报, 2011, 60(9): 098502. doi: 10.7498/aps.60.098502
    [13] 张林, 肖剑, 邱彦章, 程鸿亮. Ti/4H-SiC肖特基势垒二极管抗辐射特性的研究. 物理学报, 2011, 60(5): 056106. doi: 10.7498/aps.60.056106
    [14] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [15] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [16] 喻军, 周朋, 赵衡煜, 吴锋, 夏海平, 苏良碧, 徐军. γ射线辐照诱导Bi:α-BaB2O4单晶近红外宽带发光的研究. 物理学报, 2010, 59(5): 3538-3541. doi: 10.7498/aps.59.3538
    [17] 马颖, 陈尚达, 谢国锋. SiC晶界薄膜的变电荷分子动力学模拟. 物理学报, 2009, 58(11): 7792-7796. doi: 10.7498/aps.58.7792
    [18] 唐超, 吉璐, 孟利军, 孙立忠, 张凯旺, 钟建新. 6H-SiC(0001)表面graphene逐层生长的分子动力学研究. 物理学报, 2009, 58(11): 7815-7820. doi: 10.7498/aps.58.7815
    [19] 彭绍泉, 杜 磊, 庄奕琪, 包军林, 何 亮, 陈伟华. 基于辐照前1/f噪声的金属-氧化物-半导体场效应晶体管辐照退化模型. 物理学报, 2008, 57(8): 5205-5211. doi: 10.7498/aps.57.5205
    [20] 戴永兵, 沈荷生, 张志明, 何贤昶, 胡晓君, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究. 物理学报, 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
计量
  • 文章访问数:  4207
  • PDF下载量:  868
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-31
  • 修回日期:  2014-06-05
  • 刊出日期:  2014-08-05

SiC/C界面辐照性能的分子动力学研究

  • 1. 哈尔滨工程大学核科学与技术学院, 核安全与仿真技术国防重点学科实验室, 哈尔滨 150001;
  • 2. 环境保护部核与辐射安全中心, 北京 100082
    基金项目: 哈尔滨工程大学中央高校基本科研业务费项目(批准号:HEUCFT1103,HEUCF131507)资助的课题.

摘要: 本文通过分子动力学模拟的方法,研究了5种含不同空间结构的SiC/C界面的材料受辐照后的缺陷分布随时间以及PKA位置的变化关系,并与单质SiC中缺陷分布情况进行对比. 利用径向分布函数分析了辐照对界面原子排列情况的影响. 研究结果表明,SiC/C界面的抗辐照能力明显低于SiC内部,不同的空间结构对界面缺陷数量存在一定影响. 由径向分布函数推得界面区域石墨原子密度高则界面原子排列情况受辐照影响越大.

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回