搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共轭聚合物中受激吸收与受激辐射的量子动力学研究

王文静 孟瑞璇 李元 高琨

引用本文:
Citation:

共轭聚合物中受激吸收与受激辐射的量子动力学研究

王文静, 孟瑞璇, 李元, 高琨

Dynamical study on the stimulated absorption and emission in a coujugated polymer

Wang Wen-Jing, Meng Rui-Xuan, Li Yuan, Gao Kun
PDF
导出引用
  • 基于扩展的一维SSH紧束缚模型结合非绝热的分子动力学方法,理论研究了共轭聚合物分子(PPV)在光脉冲作用下受激吸收和受激辐射的量子动力学过程. 首先,设定分子初始处于基态,讨论了受激吸收过程中不同的电子受激跃迁模式与光激发脉冲的关系. 通过对终态的分析,发现分子受激后只能产生电子-空穴的束缚态,包括:激子、双激子和高能激子. 计算了各种激发态的产率,特别是,给出了各种激发态产率与光激发能量的定量关系. 此外,基于实验,分别讨论了光激发强度对高能激子和双激子产率的影响,并与实验结果进行了比较. 最后,设定分子初始分别处于激子和双激子态,研究了分子内定域能级之间的受激辐射过程,并简单讨论了激子和双激子受激辐射与光激发能量及强度的关系.
    By applying a femtosecond electric pump pulse to a poly(p-phenylene vinylene) (PPV) molecule, we theoretically investigate the dynamical processes for its stimulated absorption and emission. The simulations are performed within the framework of an extended version of one-dimensional Su-Schrieffer-Heeger tight-binding model combined with a nonadiabatic evolution method. Firstly, we set the molecule initially lying in the ground state, by which we give the relation between different stimulated transition modes and the photoexciting pulse. Analysis of the final states shows that we can only obtain some electron-hole binding states by an external photoexcitation for the molecule, which includes exciton, biexciton, and high-energy exciton. We have calculated their yields and find that they are determined by the photoexciting energy. In addition, based on the experimental observations, we separately investigate the effect of the photoexciting intensity on the yields of biexciton and high-energy exciton. The calculated results are consistent with the corresponding experimental speculations. Finally, by setting the molecule lying in an exciton or a biexciton, we focus on the stimulated emission process between their generated intragap states. Effects of the photoexciting energy and intensity on them are separately analyzed. These results might be of great importance for further improving the optical applications of polymers, especially for optimizing the polymer photovoltaic and laser properties.
    • 基金项目: 国家自然科学基金(批准号:21161160445)、国家留学基金委公派访问学者项目、山东省自然科学基金(批准号:ZR2013AM019)和山东大学自主创新基金(批准号:2012ZD034)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21161160445), the State Scholarship Fund of China, the Natural Science Foundation of Shandong Province (Grant No. ZR2013AM019), and the Independent Innovation Foundation of Shandong University, China (Grant No. 2012ZD034).
    [1]

    Heeger A J, Kivelson S, Schreiffer J R 1988 Rev. Mod. Phys. 60 781

    [2]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Dos Santos D A, Brédas J L, Lögdlund M, Salaneck W R 1999 Nature 397 121

    [3]

    Feng Z H, Hou Y B, Shi Q M, Liu X J, Teng F 2010 Chin. Phys. B 19 098601

    [4]

    Tobjörk D, Kaihovirta N J, Mäkelä T, Pettersson F S, Österbacka R 2008 Org. Electron 9 931

    [5]

    Hide F, DiazGarcia M A, Schwartz B J, Andersson M R, Pei Q B, Heeger A J 1996 Science 273 1833

    [6]

    Samuel I D W, Turnbull G A 2007 Chem. Rev. 107 1272

    [7]

    Wang L X, Zhang D C, Liu D S, Han S H, Xie S J 2003 Acta Phys. Sin. 52 2547(in Chinese) [王鹿霞, 张大成, 刘德胜, 韩圣浩, 解士杰 2003 物理学报 52 2547]

    [8]

    Hendry E, Schins J M, Candeias L P, Siebbeles L D A, Bonn M 2004 Phys. Rev. Lett. 92 196601

    [9]

    Virgili T, Marinotto D, Manzoni C, Cerullo G, Lanzani G 2005 Phys. Rev. Lett. 94 117402

    [10]

    Sun X, Fu R L, Yonemitsu K, Nasu K 2000 Phys. Rev. Lett. 84 2830

    [11]

    Paucka T, Henniga R, Pernera M, Lemmera U, Siegnera U, Mahrta R F, Scherfb U, Mllenb K, Bässlera H, Göbela E O 1995 Chem. Phys. Lett. 244 171

    [12]

    Ruini A, Caldas M J, Bussi G, Molinari E 2002 Phys. Rev. Lett. 88 206403

    [13]

    Gao K, Liu X J, Liu D S, Xie S J 2008 Phys. Lett. A 372 2490

    [14]

    Wohlgenannt M, Tandon K, Mazumdar S, Ramasesha S, Vardeny Z V 2001 Nature 409 494

    [15]

    Jailaubekov A E, Willard A P, Tritsch J R, Chan W L, Sai N, Gearba R, Kaake L G, Williams K J, Leung K, Rossky P J, Zhu X Y 2013 Nature Mater. 12 66

    [16]

    Grancini1 G, Maiuri M, Fazzi D, Petrozza A, Egelhaaf H-J, Brida D, Cerullo G, Lanzani G 2013 Nature Mater. 12 29

    [17]

    Bakulin A A, Rao A, Pavelyev V G, van Loosdrecht Paul H M, Pshenichnikov M S, Niedzialek D, Cornil J, Beljonne D, Friend R H 2012 Science 335 1340

    [18]

    Gao K, Xie S J, Yin S, Liu D S 2011 Org. Electron. 12 1010

    [19]

    Sun Z, Li Y, Gao K, Liu D S, An Z, Xie S J 2010 Org. Electron. 11 279

    [20]

    Sun Z, An Z, Li Y, Liu W, Liu D S, Xie S J 2009 Acta Phys. Sin. 58 4150(in Chinese) [孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰 2009 物理学报 58 4150]

    [21]

    An Z, Wu C Q, Sun X 2004 Phys. Rev. Lett. 93 216407

    [22]

    Gao K, Liu X J, Liu D S, Xie S J 2007 Phys. Rev. B 75 205412

    [23]

    Chandross M, Mazumdar S, Jeglinski S, Wei X, Vardeny Z V, Kwock E W, Miller T M 1994 Phys. Rev. B 50 14702

    [24]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698

    [25]

    Johansson A A, Stafström S 2004 Phys. Rev. B 69 235205

    [26]

    Mizes H A, Conwell E M 1994 Phys. Rev. B 50 11243

    [27]

    Liu D S, Zhao J Q, Wei J H, Xie S J, Mei L M 1999 Acta Phys. Sin. 48 1327(in Chinese) [刘德胜, 赵俊卿, 魏建华, 解士杰, 梅良模 1999 物理学报 48 1327]

    [28]

    Colaneri N F, Bradley D D C, Friend R H, Burn P L, Holmes A B, Spangler C W 1990 Phys. Rev. B 42 11670

    [29]

    Kraabel B, Klimov V I, Kohlman R, Xu S, Wang H L, McBranch D W 2000 Phys. Rev. B 61 8501

    [30]

    Kranzelbinder G, Nisoli M, Stagira S, Silvestri S D, Lanzani G, Mllen K, Scherf U, Graupner W, Leising G 1997 Appl. Phys. Lett. 71 2725

    [31]

    Klimov V I, McBranch D W, Barashkov N, Ferraris J 1998 Phys. Rev. B 58 7654

    [32]

    Schindler F, Lupton J M, Mller J, Feldmann J, Scherf U 2006 Nature Mater 5 141

    [33]

    Pramanik A, Kang H S 2011 J. Chem. Phys. 134 094702

    [34]

    Mazumdar S, Guo F, Meissner K, Fluegel B, Peyghambarian N, Kuwata-Gonokami M, Sato Y, Ema K, Shimano R, Tokihiro T, Ezaki H, Hanamura E 1996 J. Chem. Phys. 104 9292

    [35]

    Wang X D, Chen K, Sun X 2001 Synth. Met. 119 221

    [36]

    Pasquinelli M A, Yaron D 2003 J. Chem. Phys. 118 8082

    [37]

    Li S, Tong G P, George T F 2009 J. Phys. Chem. B 113 15231

  • [1]

    Heeger A J, Kivelson S, Schreiffer J R 1988 Rev. Mod. Phys. 60 781

    [2]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Dos Santos D A, Brédas J L, Lögdlund M, Salaneck W R 1999 Nature 397 121

    [3]

    Feng Z H, Hou Y B, Shi Q M, Liu X J, Teng F 2010 Chin. Phys. B 19 098601

    [4]

    Tobjörk D, Kaihovirta N J, Mäkelä T, Pettersson F S, Österbacka R 2008 Org. Electron 9 931

    [5]

    Hide F, DiazGarcia M A, Schwartz B J, Andersson M R, Pei Q B, Heeger A J 1996 Science 273 1833

    [6]

    Samuel I D W, Turnbull G A 2007 Chem. Rev. 107 1272

    [7]

    Wang L X, Zhang D C, Liu D S, Han S H, Xie S J 2003 Acta Phys. Sin. 52 2547(in Chinese) [王鹿霞, 张大成, 刘德胜, 韩圣浩, 解士杰 2003 物理学报 52 2547]

    [8]

    Hendry E, Schins J M, Candeias L P, Siebbeles L D A, Bonn M 2004 Phys. Rev. Lett. 92 196601

    [9]

    Virgili T, Marinotto D, Manzoni C, Cerullo G, Lanzani G 2005 Phys. Rev. Lett. 94 117402

    [10]

    Sun X, Fu R L, Yonemitsu K, Nasu K 2000 Phys. Rev. Lett. 84 2830

    [11]

    Paucka T, Henniga R, Pernera M, Lemmera U, Siegnera U, Mahrta R F, Scherfb U, Mllenb K, Bässlera H, Göbela E O 1995 Chem. Phys. Lett. 244 171

    [12]

    Ruini A, Caldas M J, Bussi G, Molinari E 2002 Phys. Rev. Lett. 88 206403

    [13]

    Gao K, Liu X J, Liu D S, Xie S J 2008 Phys. Lett. A 372 2490

    [14]

    Wohlgenannt M, Tandon K, Mazumdar S, Ramasesha S, Vardeny Z V 2001 Nature 409 494

    [15]

    Jailaubekov A E, Willard A P, Tritsch J R, Chan W L, Sai N, Gearba R, Kaake L G, Williams K J, Leung K, Rossky P J, Zhu X Y 2013 Nature Mater. 12 66

    [16]

    Grancini1 G, Maiuri M, Fazzi D, Petrozza A, Egelhaaf H-J, Brida D, Cerullo G, Lanzani G 2013 Nature Mater. 12 29

    [17]

    Bakulin A A, Rao A, Pavelyev V G, van Loosdrecht Paul H M, Pshenichnikov M S, Niedzialek D, Cornil J, Beljonne D, Friend R H 2012 Science 335 1340

    [18]

    Gao K, Xie S J, Yin S, Liu D S 2011 Org. Electron. 12 1010

    [19]

    Sun Z, Li Y, Gao K, Liu D S, An Z, Xie S J 2010 Org. Electron. 11 279

    [20]

    Sun Z, An Z, Li Y, Liu W, Liu D S, Xie S J 2009 Acta Phys. Sin. 58 4150(in Chinese) [孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰 2009 物理学报 58 4150]

    [21]

    An Z, Wu C Q, Sun X 2004 Phys. Rev. Lett. 93 216407

    [22]

    Gao K, Liu X J, Liu D S, Xie S J 2007 Phys. Rev. B 75 205412

    [23]

    Chandross M, Mazumdar S, Jeglinski S, Wei X, Vardeny Z V, Kwock E W, Miller T M 1994 Phys. Rev. B 50 14702

    [24]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698

    [25]

    Johansson A A, Stafström S 2004 Phys. Rev. B 69 235205

    [26]

    Mizes H A, Conwell E M 1994 Phys. Rev. B 50 11243

    [27]

    Liu D S, Zhao J Q, Wei J H, Xie S J, Mei L M 1999 Acta Phys. Sin. 48 1327(in Chinese) [刘德胜, 赵俊卿, 魏建华, 解士杰, 梅良模 1999 物理学报 48 1327]

    [28]

    Colaneri N F, Bradley D D C, Friend R H, Burn P L, Holmes A B, Spangler C W 1990 Phys. Rev. B 42 11670

    [29]

    Kraabel B, Klimov V I, Kohlman R, Xu S, Wang H L, McBranch D W 2000 Phys. Rev. B 61 8501

    [30]

    Kranzelbinder G, Nisoli M, Stagira S, Silvestri S D, Lanzani G, Mllen K, Scherf U, Graupner W, Leising G 1997 Appl. Phys. Lett. 71 2725

    [31]

    Klimov V I, McBranch D W, Barashkov N, Ferraris J 1998 Phys. Rev. B 58 7654

    [32]

    Schindler F, Lupton J M, Mller J, Feldmann J, Scherf U 2006 Nature Mater 5 141

    [33]

    Pramanik A, Kang H S 2011 J. Chem. Phys. 134 094702

    [34]

    Mazumdar S, Guo F, Meissner K, Fluegel B, Peyghambarian N, Kuwata-Gonokami M, Sato Y, Ema K, Shimano R, Tokihiro T, Ezaki H, Hanamura E 1996 J. Chem. Phys. 104 9292

    [35]

    Wang X D, Chen K, Sun X 2001 Synth. Met. 119 221

    [36]

    Pasquinelli M A, Yaron D 2003 J. Chem. Phys. 118 8082

    [37]

    Li S, Tong G P, George T F 2009 J. Phys. Chem. B 113 15231

  • [1] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [2] 傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红. 共轭聚合物链中光激发过程的无序效应. 物理学报, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [3] 王文静, 李冲, 张毛毛, 高琨. 共轭聚合物内非均匀场驱动的超快激子输运的动力学研究. 物理学报, 2019, 68(17): 177201. doi: 10.7498/aps.68.20190432
    [4] 黄珊, 刘妮, 梁九卿. 光腔中两组分玻色-爱因斯坦凝聚体的受激辐射特性和量子相变. 物理学报, 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [5] 胡喆皓, 上官紫微, 邱建榕, 杨珊珊, 鲍文, 沈毅, 李鹏, 丁志华. 基于受激辐射信号的谱域光学相干层析分子成像方法. 物理学报, 2018, 67(17): 174201. doi: 10.7498/aps.67.20171738
    [6] 严大东, 张兴华. 聚合物结晶理论进展. 物理学报, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [7] 封国宝, 王芳, 曹猛. 电子辐照聚合物带电特性多参数共同作用的数值模拟. 物理学报, 2015, 64(22): 227901. doi: 10.7498/aps.64.227901
    [8] 邸冰, 王亚东, 张亚琳. 链间耦合对极化子非弹性散射性质的影响. 物理学报, 2013, 62(10): 107202. doi: 10.7498/aps.62.107202
    [9] 高博文, 高潮, 阙文修, 韦玮. 新型高效聚合物/富勒烯有机光伏电池研究进展. 物理学报, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [10] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数. 物理学报, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [11] 黄永宪, 吕世雄, 田修波, 杨士勤, Fu Ricky, Chu K Paul, 冷劲松, 李垚. 聚合物物理属性对离子注入效应的影响. 物理学报, 2012, 61(10): 105203. doi: 10.7498/aps.61.105203
    [12] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [13] 周可余, 叶辉, 甄红宇, 尹伊, 沈伟东. 基于压电聚合物薄膜可调谐Fabry-Perot滤波器的研究. 物理学报, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [14] 张红平, 欧阳洁, 阮春蕾. 纤维悬浮聚合物熔体描述的均一结构多尺度模型. 物理学报, 2009, 58(1): 619-630. doi: 10.7498/aps.58.619
    [15] 全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟. 电子辐照下聚合物介质深层充电现象研究. 物理学报, 2009, 58(2): 1205-1211. doi: 10.7498/aps.58.1205
    [16] 史晶, 高琨, 雷杰, 解士杰. 基态非简并导电聚合物——坐标空间研究. 物理学报, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [17] 张亚妮. 微结构聚合物光纤中高双折射可调效应研究. 物理学报, 2008, 57(9): 5729-5734. doi: 10.7498/aps.57.5729
    [18] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅. 物理学报, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [19] 曹万强, 李景德. 聚合物介电弛豫的温度特性. 物理学报, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [20] 张锡娟, 李广起, 孙鑫. 聚合物中产生双激子的新通道. 物理学报, 2002, 51(1): 134-137. doi: 10.7498/aps.51.134
计量
  • 文章访问数:  2584
  • PDF下载量:  810
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-08
  • 修回日期:  2014-06-03
  • 刊出日期:  2014-10-05

共轭聚合物中受激吸收与受激辐射的量子动力学研究

  • 1. 齐鲁师范学院物理与电子工程学院, 济南 250013;
  • 2. 山东大学物理学院, 晶体材料国家重点实验室, 济南 250100;
  • 3. 佐治亚理工学院, 化学与生物化学系, 亚特兰大 30332
    基金项目: 国家自然科学基金(批准号:21161160445)、国家留学基金委公派访问学者项目、山东省自然科学基金(批准号:ZR2013AM019)和山东大学自主创新基金(批准号:2012ZD034)资助的课题.

摘要: 基于扩展的一维SSH紧束缚模型结合非绝热的分子动力学方法,理论研究了共轭聚合物分子(PPV)在光脉冲作用下受激吸收和受激辐射的量子动力学过程. 首先,设定分子初始处于基态,讨论了受激吸收过程中不同的电子受激跃迁模式与光激发脉冲的关系. 通过对终态的分析,发现分子受激后只能产生电子-空穴的束缚态,包括:激子、双激子和高能激子. 计算了各种激发态的产率,特别是,给出了各种激发态产率与光激发能量的定量关系. 此外,基于实验,分别讨论了光激发强度对高能激子和双激子产率的影响,并与实验结果进行了比较. 最后,设定分子初始分别处于激子和双激子态,研究了分子内定域能级之间的受激辐射过程,并简单讨论了激子和双激子受激辐射与光激发能量及强度的关系.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回