搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有poly-Si1-xGex栅的应变SiGep型金属氧化物半导体场效应晶体管阈值电压漂移模型研究

刘翔宇 胡辉勇 张鹤鸣 宣荣喜 宋建军 舒斌 王斌 王萌

引用本文:
Citation:

具有poly-Si1-xGex栅的应变SiGep型金属氧化物半导体场效应晶体管阈值电压漂移模型研究

刘翔宇, 胡辉勇, 张鹤鸣, 宣荣喜, 宋建军, 舒斌, 王斌, 王萌

Study on the strained SiGe p-channel metal-oxide-semiconductor field-effect transistor with polycrystalline silicon germanium gate threshold voltage

Liu Xiang-Yu, Hu Hui-Yong, Zhang He-Ming, Xuan Rong-Xi, Song Jian-Jun, Shu Bin, Wang Bin, Wang Meng
PDF
导出引用
  • 针对具有poly-Si1-xGex栅的应变SiGe p型金属氧化物半导体场效应晶体管(PMOSFET), 研究了其垂直电势与电场分布, 建立了考虑栅耗尽的poly-Si1-xGex栅情况下该器件的等效栅氧化层厚度模型, 并利用该模型分析了poly-Si1-xGex栅及应变SiGe层中Ge组分对等效氧化层厚度的影响. 研究了应变SiGe PMOSFET热载流子产生的机理及其对器件性能的影响, 以及引起应变SiGe PMOSFET阈值电压漂移的机理, 并建立了该器件阈值电压漂移模型, 揭示了器件阈值电压漂移随电应力施加时间、栅极电压、poly-Si1-xGex栅及应变SiGe层中Ge组分的变化关系. 并在此基础上进行了实验验证, 在电应力施加10000 s时, 阈值电压漂移0.032 V, 与模拟结果基本一致, 为应变SiGe PMOSFET及相关电路的设计与制造提供了重要的理论与实践基础.
    In this work, the strained SiGe p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET) with poly-Si1-xGex gate has been studied. Based on the analysis of vertical electric field and potential distribution, the equipment oxide thickness of strained SiGe PMOSFET with poly Si1-xGex gate is established. The mechanism and the influence of hot carriers induced are studied. A model of the drift of threshold voltage is established; its relationships with the duration of the applied electrical stress, the voltage of gate, the Ge content of the poly Si1-xGex gate and the strained SiGe are also obtained. Based on the above results, the simulation results have been compared with the experimental data. The drift of threshold voltage is 0.032 V under 10000 s electrical stress. A good agreement is observed, which indicates the validation of our proposed model.
    • 基金项目: 教育部博士点基金(批准号:JY0300122503)和中央高等学校基本科研基金(批准号:K5051225014,K5051225004)资助的课题.
    • Funds: Project supported by the Doctoral Foundation of Ministry of Education, China (Grant No. JY0300122503) and Fundamental Research Funds for the Central Universities of China (Grant Nos. K5051225014, K5051225004).
    [1]

    Wang B, Zhang H M, Hu H Y, Zhang Y M, Shu B, Zhou C Y, Li Y C, L Y 2013 Acta Phys. Sin. 62 057103 (in Chinese) [王斌, 张鹤鸣, 胡辉勇, 张玉明, 舒斌, 周春宇, 李妤晨, 吕懿 2013 物理学报 62 057103]

    [2]

    Qu J T, Zhang H M, Wang G Y, Wang X Y, Hu H Y 2011 Acta Phys. Sin. 60 058502 (in Chinese) [屈江涛, 张鹤鸣, 王冠宇, 王晓艳, 胡辉勇 2011 物理学报 60 058502]

    [3]

    Yousif M Y A, Willander M, Lundgren P, Caymax M 2000 8th IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications Glasgow, UK, November 13-14, 2000 p271

    [4]

    Nayfeh H M, Hoyt J L, Antoniadis D A 2004 IEEE Trans. Electron Dev. 51 2069

    [5]

    Josse E, Skotnicki T 2001 Solid-State Device Research Conference Crolles, France, September 11-13, 2001 p207

    [6]

    Hao Y, Liu H X 2008 The Feasibility and the Failure Mechanism of Micronano MOS Devices (Beijing: Science Press) pp256-257 (in Chinese) [郝跃, 刘红侠 2008 微纳米MOS器件可行性与失效机理 (北京: 科学出版社) 第256–257页]

    [7]

    Liu Y L, Tan B H, Zhang K L 2004 Microelectronic Technology and Engineering (Beijing: Publishing House of electronics industry) pp286-287 (in Chinese) [刘玉岭, 檀柏海, 张楷亮 2004 微电子技术工程 (北京: 电子工业出版社) 第286–287 页]

    [8]

    Pierret R F (translated by Huang R, Wang Q, Wang J Y) 2010 Fundamentals of Semiconductor Device (Beijing: Publishing House of Electronics Industry) pp475-477 (in Chinese) [皮埃洛 著 (黄如, 王漪, 王金延译)2010 半导体器件基础 (北京: 电子工业出版社) 第475–477页]

    [9]

    Yue H, Sheng T, Wang Y 2001 IEEE Trans. Electron Dev. 48 2279

    [10]

    Pan Y 1994 IEEE Trans. Electron Dev. 41 1639

    [11]

    Liu E K, Zhu B S, Luo J S 2008 Semicondutor Physics (Beijing: Defense Industry Press) p366 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(北京: 国防工业出版社)第366页]

    [12]

    Lee H, Vashaee D, Wang D Z, Dresselhaus M S, Ren Z F, Chen G 2010 J. Appl. Phys. 107 094308

    [13]

    Xiao Q 2011 M. S. Thesis (Xian: Xidian University) (in Chinese) [肖庆 2011 硕士学位论文 (西安: 西安电子科技大学)]

    [14]

    Cao Y R, Hao Y 2007 Chin. J. Semiconduct. 28 665

    [15]

    Liu Y A, Du L, Bao J L 2008 Acta Phys. Sin. 57 2468 (in Chinese) [刘宇安, 杜磊, 包军林 2008 物理学报 57 2468]

  • [1]

    Wang B, Zhang H M, Hu H Y, Zhang Y M, Shu B, Zhou C Y, Li Y C, L Y 2013 Acta Phys. Sin. 62 057103 (in Chinese) [王斌, 张鹤鸣, 胡辉勇, 张玉明, 舒斌, 周春宇, 李妤晨, 吕懿 2013 物理学报 62 057103]

    [2]

    Qu J T, Zhang H M, Wang G Y, Wang X Y, Hu H Y 2011 Acta Phys. Sin. 60 058502 (in Chinese) [屈江涛, 张鹤鸣, 王冠宇, 王晓艳, 胡辉勇 2011 物理学报 60 058502]

    [3]

    Yousif M Y A, Willander M, Lundgren P, Caymax M 2000 8th IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications Glasgow, UK, November 13-14, 2000 p271

    [4]

    Nayfeh H M, Hoyt J L, Antoniadis D A 2004 IEEE Trans. Electron Dev. 51 2069

    [5]

    Josse E, Skotnicki T 2001 Solid-State Device Research Conference Crolles, France, September 11-13, 2001 p207

    [6]

    Hao Y, Liu H X 2008 The Feasibility and the Failure Mechanism of Micronano MOS Devices (Beijing: Science Press) pp256-257 (in Chinese) [郝跃, 刘红侠 2008 微纳米MOS器件可行性与失效机理 (北京: 科学出版社) 第256–257页]

    [7]

    Liu Y L, Tan B H, Zhang K L 2004 Microelectronic Technology and Engineering (Beijing: Publishing House of electronics industry) pp286-287 (in Chinese) [刘玉岭, 檀柏海, 张楷亮 2004 微电子技术工程 (北京: 电子工业出版社) 第286–287 页]

    [8]

    Pierret R F (translated by Huang R, Wang Q, Wang J Y) 2010 Fundamentals of Semiconductor Device (Beijing: Publishing House of Electronics Industry) pp475-477 (in Chinese) [皮埃洛 著 (黄如, 王漪, 王金延译)2010 半导体器件基础 (北京: 电子工业出版社) 第475–477页]

    [9]

    Yue H, Sheng T, Wang Y 2001 IEEE Trans. Electron Dev. 48 2279

    [10]

    Pan Y 1994 IEEE Trans. Electron Dev. 41 1639

    [11]

    Liu E K, Zhu B S, Luo J S 2008 Semicondutor Physics (Beijing: Defense Industry Press) p366 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(北京: 国防工业出版社)第366页]

    [12]

    Lee H, Vashaee D, Wang D Z, Dresselhaus M S, Ren Z F, Chen G 2010 J. Appl. Phys. 107 094308

    [13]

    Xiao Q 2011 M. S. Thesis (Xian: Xidian University) (in Chinese) [肖庆 2011 硕士学位论文 (西安: 西安电子科技大学)]

    [14]

    Cao Y R, Hao Y 2007 Chin. J. Semiconduct. 28 665

    [15]

    Liu Y A, Du L, Bao J L 2008 Acta Phys. Sin. 57 2468 (in Chinese) [刘宇安, 杜磊, 包军林 2008 物理学报 57 2468]

计量
  • 文章访问数:  1768
  • PDF下载量:  413
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-25
  • 修回日期:  2014-07-24
  • 刊出日期:  2014-12-05

具有poly-Si1-xGex栅的应变SiGep型金属氧化物半导体场效应晶体管阈值电压漂移模型研究

  • 1. 西安电子科技大学微电子学院, 宽禁带半导体材料与器件重点实验室, 西安 710071
    基金项目: 

    教育部博士点基金(批准号:JY0300122503)和中央高等学校基本科研基金(批准号:K5051225014,K5051225004)资助的课题.

摘要: 针对具有poly-Si1-xGex栅的应变SiGe p型金属氧化物半导体场效应晶体管(PMOSFET), 研究了其垂直电势与电场分布, 建立了考虑栅耗尽的poly-Si1-xGex栅情况下该器件的等效栅氧化层厚度模型, 并利用该模型分析了poly-Si1-xGex栅及应变SiGe层中Ge组分对等效氧化层厚度的影响. 研究了应变SiGe PMOSFET热载流子产生的机理及其对器件性能的影响, 以及引起应变SiGe PMOSFET阈值电压漂移的机理, 并建立了该器件阈值电压漂移模型, 揭示了器件阈值电压漂移随电应力施加时间、栅极电压、poly-Si1-xGex栅及应变SiGe层中Ge组分的变化关系. 并在此基础上进行了实验验证, 在电应力施加10000 s时, 阈值电压漂移0.032 V, 与模拟结果基本一致, 为应变SiGe PMOSFET及相关电路的设计与制造提供了重要的理论与实践基础.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回