搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co元素对硬质合金基底金刚石涂层膜基界面结合强度的影响

简小刚 陈军

引用本文:
Citation:

Co元素对硬质合金基底金刚石涂层膜基界面结合强度的影响

简小刚, 陈军

The Influence of Co binding phase on adhesive strength of diamond coating with cemented carbide substrate

Jian Xiao-Gang, Chen Jun
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理平面波赝势方法, 研究了硬质合金刀具基底黏结相Co元素对金刚石涂层膜基界面结合强度的影响机理. 借助Materials Studio软件建立了WC/Diamond膜基界面模型和WC-Co/Diamond膜基界面模型, 采用CASTEP仿真软件计算了WC/Diamond膜基界面模型和WC-Co/Diamond膜基界面模型的最优稳定结构. 通过仿真计算, 获得了WC/Diamond膜基界面模型和WC-Co/Diamond膜基界面模型的界面结合能、电荷密度图及Mulliken重叠布居数. 经对比分析后发现, 硬质合金基底中磁性元素Co的存在能转移金刚石涂层膜基界面处W元素及C元素的电荷, 从而使膜基界面处的原子因失电荷而相斥, 这直接导致了金刚石涂层膜基界面间距变大, 使得金刚石涂层膜基界面结合能降低.
    Diamond coating has many excellent properties as the same as those of the natural diamond, such as extreme hardness, high thermal conductivity, low thermal expansion coefficient, high chemical stability, and good abrasive resistance, which is considered as the best tool coating material applied to the high-silicon aluminum alloy cutting. We can use the hot filament chemical vapor deposition method (HFCVD) to deposit a 2–20 μm diamond coating on the cemented carbide tool to improve the cutting performance and increase the tool life significantly. Many experiments have proved that the existence of cobalt phase can weaken the adhesive strength of diamond coating. However, we still lack a perfect theory to explain why the Co element can reduce the adhesive strength of diamond coating is still lacking. What we can do now is only to improve the adhesive strength of diamond coating by doing testing many times in experiments. Compared with these traditional experiments, the first principles simulation based on quantum mechanics can describe the microstructure property and electron density of materials. It is successfully used to investigate the surface, interface, electron component, and so on etc. We can also use this method to study the interface problem at an atomic level. So the first principles based upon density functional theory (DFT) is used to investigate the influence of cobalt binding phase in cemented carbide substrate on adhesive strength of diamond coating. In this article, we uses Material Studios software to build WC/diamond and WC-Co/diamond interface models to evaluate the influence of cobalt phase on the adhesive strength of diamond coating with CASTEP program which can calculate the most stablest structure of film-substrate interface. We use PBE functional form to obtain the exchange potential and relevant potential, and to solve the self-consistent Kohn-Sham equations. We calculate the interfacial bonding energy, analyse the electron density of diamond coating and the bond Mulliken population of diamond film-substrate interface. The results show that the interfacial bonding energy of WC/diamond is 6.74 J/m2 and that of WC-Co/diamond is 5.94 J/m2, which implies that the adhesive strength of WC/diamond is better than that of WC-Co/diamond. We also find that Co element can transfer the charges near the interface of WC/diamond model when the magnetic Co element exists at the WC/diamond interface. As a result, the polarity of tungsten element in tungsten carbide and the polarity of carbon element in diamond coating near the interface turn to be identical polarity, and then the charge density of tungsten in cemented carbide changes from 0.430 e/A3 to 0.201 e/A3 and the charge density of Carbon in diamond changes from-0.045 e/A3 to 0.037 e/A3, and they exclude to each other, so the distance of interface becomes larger than that from the WC/diamond model, which changes from 2.069 Å to 3.649 Å. This can explain why the existence of Co element can weaken the adhesive strength of diamond coating. Meanwhile, Mulliken population analyses show that the bond strength of WC-Co /diamond at the interface is smaller than that of WC/diamond. So this can prove that the cobalt binding phase in cemented carbide substrate can weaken the adhesive strength of diamond coating, and then we need to do some pretreatments in order to reduce the cobalt binding phase in the cemented carbide substrate before depositing diamond coating.
      通信作者: 简小刚, jianxgg@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 50605047, 51275358)资助的课题.
      Corresponding author: Jian Xiao-Gang, jianxgg@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50605047, 51275358).
    [1]

    Jian X G, Shi L D, Chen M, Sun F H 2006 Diamond Relat. Mater. 15 313

    [2]

    Straffelini G, Scardi P, Molinari A, Polini R 2001 Wear. 249 1020

    [3]

    Shen B, Sun F H 2009 Diamond Relat. Mater. 18 238

    [4]

    Liu M N, Bian Y B, Zheng S J, Zhu T, Chen Y G, Chen Y L, Wang J S 2015 Thin Solid Films 584 165

    [5]

    Wang X C, Lin Z C, Shen B, Sun F H 2014 Trans. Nonferrous Met. Soc. China 24 3181

    [6]

    Wei Q P, Ashfold M N R, Mankelevich Y A, Yu Z M, Liu P Z, Ma L 2011 Diamond Relat. Mater. 20 641

    [7]

    Deng F M, Wang Q, Zou B, Zhang D, Lu S T, Zhao X K 2013 Cemented Carbide 30 113 (in Chinese) [邓福铭, 王 强, 邹 波, 张 丹, 陆绍悌, 赵晓凯 2013 硬质合金 30 113]

    [8]

    Wei Q P, Yu Z M, Ma L, Yang L, Liu W P, Xiao H 2008 Chin. J Nonferrous Met. 18 1070 (in Chinese) [魏秋平, 余志明, 马莉, 杨莉, 刘王平, 肖和 2008 中国有色金属学报 18 1070]

    [9]

    Li G, Zhao Y G, Zheng R, Ni J, Wu Y N 2015 Chin. Phy. B 24 087302

    [10]

    Meng F S, Li J H, Zhao X 2014 Acta Phys. Sin. 63 237102 (in Chinese) [孟凡顺, 李久会, 赵星 2014 物理学报 63 237102]

    [11]

    Li T F, Liu T M, Wei H M, Hussain S H, Miao B, Zeng W, Peng X H 2015 Comput. Mater. Sci. 105 83

    [12]

    Ullah M, Ahmed E, Hussain F, Rana A M, Raza R 2015 Appl. Surf. Sci. 334 40

    [13]

    Zhang L 2009 M. S. Dissertation (Jinan: Shangdong University) (in Chinese) [张路 2009 硕士学位论文(济南: 山东大学)]

    [14]

    Jian X G, Zhang Y H 2015 Acta Phys. Sin. 64 046701 (in Chinese) [简小刚, 张允华 2015 物理学报 64 046701]

    [15]

    Jian X G, Zhang Y H 2015 Diamond & Abrasives Engineering 34 23 (in Chinese) [简小刚, 张允华 2015 金刚石与磨料磨具工程 34 23]

    [16]

    Wang Q J, Tan Q H, Liu Y K 2015 Comput. Mater. Sci. 105 1

    [17]

    Wang L L, Wan Q, Hu W J, Zhao X P 2010 Comput. Appl. Chem. 27 6 (in Chinese) [王丽莉, 万强, 胡文军, 赵晓平 2010 计算机与应用化学 27 6]

    [18]

    Chen B S, Li Y Z, Guan X Y, Wang C, Wang C X, Gao X Y 2015 Comput. Mater. Sci. 105 66

    [19]

    Song Y, Xing F J, Dai J H, Yang R 2014 Intermetallics. 49 1

    [20]

    Tang J, Zhang G Y, Bao J S, Liu G L, Liu C M 2014 Acta Phys. Sin. 63 187101 (in Chinese) [唐杰, 张国英, 鲍君善, 刘贵立, 刘春明 2014 物理学报 63 187101]

    [21]

    Peng Y Z, Huo D X, He H P, Li Y, Li L W, Wang H W, Qian Z H 2012 Journal of Magn. Magn. Mater. 324 690

    [22]

    Pan J W, Li C, Zhao Y F, Liu R X, Gong Y Y, Niu L Y, Liu X J, Chi B Q 2015 Chem. Phy. Lett. 628 43

  • [1]

    Jian X G, Shi L D, Chen M, Sun F H 2006 Diamond Relat. Mater. 15 313

    [2]

    Straffelini G, Scardi P, Molinari A, Polini R 2001 Wear. 249 1020

    [3]

    Shen B, Sun F H 2009 Diamond Relat. Mater. 18 238

    [4]

    Liu M N, Bian Y B, Zheng S J, Zhu T, Chen Y G, Chen Y L, Wang J S 2015 Thin Solid Films 584 165

    [5]

    Wang X C, Lin Z C, Shen B, Sun F H 2014 Trans. Nonferrous Met. Soc. China 24 3181

    [6]

    Wei Q P, Ashfold M N R, Mankelevich Y A, Yu Z M, Liu P Z, Ma L 2011 Diamond Relat. Mater. 20 641

    [7]

    Deng F M, Wang Q, Zou B, Zhang D, Lu S T, Zhao X K 2013 Cemented Carbide 30 113 (in Chinese) [邓福铭, 王 强, 邹 波, 张 丹, 陆绍悌, 赵晓凯 2013 硬质合金 30 113]

    [8]

    Wei Q P, Yu Z M, Ma L, Yang L, Liu W P, Xiao H 2008 Chin. J Nonferrous Met. 18 1070 (in Chinese) [魏秋平, 余志明, 马莉, 杨莉, 刘王平, 肖和 2008 中国有色金属学报 18 1070]

    [9]

    Li G, Zhao Y G, Zheng R, Ni J, Wu Y N 2015 Chin. Phy. B 24 087302

    [10]

    Meng F S, Li J H, Zhao X 2014 Acta Phys. Sin. 63 237102 (in Chinese) [孟凡顺, 李久会, 赵星 2014 物理学报 63 237102]

    [11]

    Li T F, Liu T M, Wei H M, Hussain S H, Miao B, Zeng W, Peng X H 2015 Comput. Mater. Sci. 105 83

    [12]

    Ullah M, Ahmed E, Hussain F, Rana A M, Raza R 2015 Appl. Surf. Sci. 334 40

    [13]

    Zhang L 2009 M. S. Dissertation (Jinan: Shangdong University) (in Chinese) [张路 2009 硕士学位论文(济南: 山东大学)]

    [14]

    Jian X G, Zhang Y H 2015 Acta Phys. Sin. 64 046701 (in Chinese) [简小刚, 张允华 2015 物理学报 64 046701]

    [15]

    Jian X G, Zhang Y H 2015 Diamond & Abrasives Engineering 34 23 (in Chinese) [简小刚, 张允华 2015 金刚石与磨料磨具工程 34 23]

    [16]

    Wang Q J, Tan Q H, Liu Y K 2015 Comput. Mater. Sci. 105 1

    [17]

    Wang L L, Wan Q, Hu W J, Zhao X P 2010 Comput. Appl. Chem. 27 6 (in Chinese) [王丽莉, 万强, 胡文军, 赵晓平 2010 计算机与应用化学 27 6]

    [18]

    Chen B S, Li Y Z, Guan X Y, Wang C, Wang C X, Gao X Y 2015 Comput. Mater. Sci. 105 66

    [19]

    Song Y, Xing F J, Dai J H, Yang R 2014 Intermetallics. 49 1

    [20]

    Tang J, Zhang G Y, Bao J S, Liu G L, Liu C M 2014 Acta Phys. Sin. 63 187101 (in Chinese) [唐杰, 张国英, 鲍君善, 刘贵立, 刘春明 2014 物理学报 63 187101]

    [21]

    Peng Y Z, Huo D X, He H P, Li Y, Li L W, Wang H W, Qian Z H 2012 Journal of Magn. Magn. Mater. 324 690

    [22]

    Pan J W, Li C, Zhao Y F, Liu R X, Gong Y Y, Niu L Y, Liu X J, Chi B Q 2015 Chem. Phy. Lett. 628 43

  • [1] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究. 物理学报, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] 刘郅澄, 周杰, 陈凡, 彭彪, 彭文屹, 章爱生, 邓晓华, 罗显芝, 刘日新, 刘德武, 黄雨, 阎军. Si对Inconel 718合金中γ相影响的第一性原理研究. 物理学报, 2023, 72(18): 186301. doi: 10.7498/aps.72.20230583
    [3] 祝平, 张强, 芶华松, 王平平, 邵溥真, 小林郁夫, 武高辉. 金刚石/铝复合材料界面性质第一性原理计算及界面反应. 物理学报, 2021, 70(17): 178101. doi: 10.7498/aps.70.20210341
    [4] 孙士阳, 迟中波, 徐平平, 安泽宇, 张俊皓, 谭心, 任元. 金刚石(111)/Al界面形成及性能的第一性原理研究. 物理学报, 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [5] 周红才, 黄树来, 李桂霞, 于桂凤, 王娟, 步红霞. 一氧化碳纳米管束低压相的第一性原理研究. 物理学报, 2019, 68(21): 217101. doi: 10.7498/aps.68.20190539
    [6] 杨艳敏, 李佳, 马洪然, 杨广, 毛秀娟, 李聪聪. Co2-基Heusler合金Co2FeAl1–xSix(x = 0.25, x = 0.5, x = 0.75)的结构、电子结构及热电特性的第一性原理研究. 物理学报, 2019, 68(4): 046101. doi: 10.7498/aps.68.20181641
    [7] 黄灿, 李小影, 朱岩, 潘燕飞, 樊济宇, 施大宁, 马春兰. 第一性原理计算Co/h-BN界面上的微弱Dzyaloshinsky-Moriya相互作用. 物理学报, 2018, 67(11): 117102. doi: 10.7498/aps.67.20180337
    [8] 熊辉辉, 刘昭, 张恒华, 周阳, 俞园. 合金元素对钢中NbC异质形核影响的第一性原理研究. 物理学报, 2017, 66(16): 168101. doi: 10.7498/aps.66.168101
    [9] 熊辉辉, 张慧宁. 稀土元素在α-Fe和Fe3C中分配行为的第一性原理研究. 物理学报, 2016, 65(24): 248101. doi: 10.7498/aps.65.248101
    [10] 王应, 李勇, 李宗宝. B,N协同掺杂金刚石电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(8): 087101. doi: 10.7498/aps.65.087101
    [11] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [12] 简小刚, 张允华. 温度对金刚石涂层膜基界面力学性能的影响. 物理学报, 2015, 64(4): 046701. doi: 10.7498/aps.64.046701
    [13] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [14] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [15] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究. 物理学报, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [16] 赵荣达, 朱景川, 刘勇, 来忠红. FeAl(B2) 合金La, Ac, Sc 和 Y 元素微合金化的第一性原理研究. 物理学报, 2012, 61(13): 137102. doi: 10.7498/aps.61.137102
    [17] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [18] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究. 物理学报, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [19] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] 杨仕娥, 姚宁, 王小平, 李会军, 马丙现, 秦广雍, 张兵临. Mo离子注入对金刚石涂层附着性能的影响. 物理学报, 2002, 51(2): 347-350. doi: 10.7498/aps.51.347
计量
  • 文章访问数:  5742
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-13
  • 修回日期:  2015-09-05
  • 刊出日期:  2015-11-05

/

返回文章
返回