搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纳米天线的多通道高强度定向表面等离子体波激发

熊志成 朱丽霖 刘诚 高淑梅 朱健强

引用本文:
Citation:

基于纳米天线的多通道高强度定向表面等离子体波激发

熊志成, 朱丽霖, 刘诚, 高淑梅, 朱健强

High-intensity directional surface plasmonic excitation based on the multi metallic slits with nano-antenna

Xiong Zhi-Cheng, Zhu Li-Lin, Liu Cheng, Gao Shu-Mei, Zhu Jian-Qiang
PDF
导出引用
  • 设计了一种带有纳米天线的金属微腔结构, 以实现高强度表面等离子的定向激发. 在利用双狭缝结构实现表面等离子体波定向激发的基础上, 分别结合共振增强和干涉相长原理, 在传统结构的入射端面上添加纳米天线结构, 并增加狭缝通道数, 实现了定向激发的表面等离子体波的能量增强. 基于纳米天线的多通道高强度定向表面等离子体波激发装置结构简单, 系统紧凑, 并能够有效提高定向传播的表面等离子体波的能量密度和传播距离, 其对微纳光学传输和高密度光学集成领域等方面的研究具有重要意义.
    Micro-nano structure optical device based on surface plasmon polariton such as super lens, micro-nano resonators and waveguides, etc. owns great applications in different research fields, especially in integrated optics and nanophotonics, for it has extremely small size and can be integrated into a micro-nano optical system. Comparatively, the directional wave exciter attracts much attention since it breaks the symmetries of wave propagation and excitation and can be applied to a micro-nano optical logic modulation system in the future. In order to realize the high-efficiency directional excitation in ultra-small structure based on surface plasmon polariton, a newly designed metal insulator metal waveguide based surface plasmon directional exciter with multiple channels and nano antenna is presented in this paper. The basic structure of the surface plasmon directional exciter is a two-slit metal plate, and the directional propagation surface plasmon wave is generated according to wave interference. To obtain a single surface plasmon wave in the specific orientation, a phase difference of π/2 between the surface waves generated by slits is necessary. To achieve the different phase differences, both heights and widths of the channels are calculated according to the waveguide mode function. It is worth noting that the directional wave exciter with dual channels is able to generate unsymmetrical wave propagation, however, the excitation efficiency is rather low, which restricts its potential applications in micro-nano optical system. In the paper, in order to further raise the coupling efficiency of the excited surface plasmon wave, and increase its propagation, other additional channels are designed in the directional wave exciter structure. Compared with the traditional dual channel system, the additional channels with similar parameters, and the same interference features are introduced in the surface plasmon directional exciter to increase the light transmission and surface wave energy. In addition, a nano antenna structure based on resonance is presented on the structure surface to enhance the surface plasmon excitation as well. The design tactics of the directional surface plasmon wave exciter are analytically explained in the paper. With numerical calculation based on the finite difference time domain method, the simulation result proves that the proposed surface plasmon wave directional exciter is able to generate single orientation surface wave with extremely high coupling ratio. Moreover, with additional multiple channels and nano antenna, the energy of the directional coupled surface plasmon wave is improved obviously, which indicates that the propagation distance of the surface plasmon wave is increased. In the simulation, both the additional channels and nano antenna are able to increase the energy and propagation distance of the surface plasmon wave obviously: the energies of directional propagated surface plasmon waves of four and six channel directional wave exciters with nano antenna are 6.74 times and 9.30 times that of the traditional dual slit directional wave exciter without nano antenna, respectively. Moreover, it is worth noting that the newly designed nano antenna based multi-channel enhanced surface plasmon wave directional exciter owns compact structure and can be easily fabricated at low cost. It is believed that this work can be an important reference for designing micro and nano photonic and plasmonic elements in integrated optics.
      通信作者: 刘诚, cheng.liu@hotmail.co.uk
    • 基金项目: 江苏省自然科学基金(批准号: BK2012548, BK20130162)资助的课题.
      Corresponding author: Liu Cheng, cheng.liu@hotmail.co.uk
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK2012548, BK20130162).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451

    [3]

    Goh X M, Lin L, Roberts A 2011 Opt. Soc. Am. B 28 547

    [4]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [5]

    Wang C, Chen J J, Tang W H, Xiao J H 2012 Chin. Phys. Lett. 29 127304

    [6]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [7]

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese) [张喆, 柳倩, 祁志美 2013 物理学报 62 060703]

    [8]

    O'Carroll D M, Hofmann C E, Atwater H A 2010 Adv. Mater. 22 1223

    [9]

    Lu Y Q, Hu S L, Lu Y, Xu J, Wang J 2015 Acta Phys. Sin. 64 097301 (in Chinese) [陆云清, 呼斯楞, 陆懿, 许吉, 王瑾 2015 物理学报 64 097301]

    [10]

    Gan Q Q, Guo B S, Song G F, Chen L H, Fu Z, Ding Y J, Bartoli F J 2007 Appl. Phys. Lett. 90 161130

    [11]

    Zhou Y J, Cui T J 2011 Appl. Phys. Lett. 98 221901

    [12]

    Lo'pez-Tejeira F, Rodrigo S G, Martin-Moreno L, Garcia-Vidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, Gonzalez M U, Weeber J C, Dereux A 2007 Nat. Phys. 3 324

    [13]

    Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331

    [14]

    Mueller J P B, Leosson K, Capasso F 2014 Nano Lett. 14 5530

    [15]

    Rodríguez-Fortuõ F J, Marino G, Ginzburg P, O'Connor D, Martínez A, Wurtz G A, Zayats A V 2013 Science 340 328

    [16]

    Zhang Y F, Wang H M, Liao H M, Li Z, Sun C W, Chen J J, Gong Q H 2014 Appl. Phys. Lett. 105 231101

    [17]

    Lu F, Sun L, Wang J, Li K, Xu A S 2014 Appl. Phys. Lett. 105 091112

    [18]

    Lu F, Li K, He Z J, Liu D L, Xu A S 2014 IEEE Photon. Technol. Lett. 26 1730

    [19]

    Wang Y K, Wang J C, Gao S M, Liu C 2013 Appl. Phys. Express 6 022003

    [20]

    Gordon R, Brolo A G 2005 Opt. Express 13 1933

    [21]

    Shi H F, Wang C T, Du C, Luo X G, Dong X C, Gao H T 2005 Opt. Express 13 6815

    [22]

    Cui Y, He S 2009 Opt. Lett. 34 16

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451

    [3]

    Goh X M, Lin L, Roberts A 2011 Opt. Soc. Am. B 28 547

    [4]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [5]

    Wang C, Chen J J, Tang W H, Xiao J H 2012 Chin. Phys. Lett. 29 127304

    [6]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [7]

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese) [张喆, 柳倩, 祁志美 2013 物理学报 62 060703]

    [8]

    O'Carroll D M, Hofmann C E, Atwater H A 2010 Adv. Mater. 22 1223

    [9]

    Lu Y Q, Hu S L, Lu Y, Xu J, Wang J 2015 Acta Phys. Sin. 64 097301 (in Chinese) [陆云清, 呼斯楞, 陆懿, 许吉, 王瑾 2015 物理学报 64 097301]

    [10]

    Gan Q Q, Guo B S, Song G F, Chen L H, Fu Z, Ding Y J, Bartoli F J 2007 Appl. Phys. Lett. 90 161130

    [11]

    Zhou Y J, Cui T J 2011 Appl. Phys. Lett. 98 221901

    [12]

    Lo'pez-Tejeira F, Rodrigo S G, Martin-Moreno L, Garcia-Vidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, Gonzalez M U, Weeber J C, Dereux A 2007 Nat. Phys. 3 324

    [13]

    Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331

    [14]

    Mueller J P B, Leosson K, Capasso F 2014 Nano Lett. 14 5530

    [15]

    Rodríguez-Fortuõ F J, Marino G, Ginzburg P, O'Connor D, Martínez A, Wurtz G A, Zayats A V 2013 Science 340 328

    [16]

    Zhang Y F, Wang H M, Liao H M, Li Z, Sun C W, Chen J J, Gong Q H 2014 Appl. Phys. Lett. 105 231101

    [17]

    Lu F, Sun L, Wang J, Li K, Xu A S 2014 Appl. Phys. Lett. 105 091112

    [18]

    Lu F, Li K, He Z J, Liu D L, Xu A S 2014 IEEE Photon. Technol. Lett. 26 1730

    [19]

    Wang Y K, Wang J C, Gao S M, Liu C 2013 Appl. Phys. Express 6 022003

    [20]

    Gordon R, Brolo A G 2005 Opt. Express 13 1933

    [21]

    Shi H F, Wang C T, Du C, Luo X G, Dong X C, Gao H T 2005 Opt. Express 13 6815

    [22]

    Cui Y, He S 2009 Opt. Lett. 34 16

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] 马涛, 马家赫, 刘恒, 田永生, 刘少晖, 王芳. 一种电光可调的铌酸锂/钠基表面等离子体定向耦合器. 物理学报, 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [3] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性. 物理学报, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [4] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究. 物理学报, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [5] 蔡昕旸, 王新伟, 张玉苹, 王登魁, 方铉, 房丹, 王晓华, 魏志鹏. 铟锡氧化物薄膜表面等离子体损耗降低的研究. 物理学报, 2018, 67(18): 180201. doi: 10.7498/aps.67.20180794
    [6] 张祎男, 王丽华, 柳华杰, 樊春海. 基于DNA自组装的金属纳米结构制备及相关纳米光子学研究. 物理学报, 2017, 66(14): 147101. doi: 10.7498/aps.66.147101
    [7] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [8] 王同标, 刘念华, 于天宝, 徐旭明, 廖清华. 含有凹口的金属纳米环形共振器的本征模式分裂. 物理学报, 2014, 63(1): 017301. doi: 10.7498/aps.63.017301
    [9] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [10] 黄洪, 赵青, 焦蛟, 梁高峰, 黄小平. 深亚波长约束的表面等离子体纳米激光器研究. 物理学报, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [11] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [12] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [13] 李雪莲, 张志东, 王红艳, 熊祖洪, 张中月. 应用平行隔板增强纳米球表面电场. 物理学报, 2011, 60(4): 047807. doi: 10.7498/aps.60.047807
    [14] 程木田. 经典光场相干控制金属纳米线表面等离子体传输. 物理学报, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [15] 李山, 钟明亮, 张礼杰, 熊祖洪, 张中月. 偏振方向及结构间耦合作用对空心方形银纳米结构表面等离子体共振的影响. 物理学报, 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [16] 陈华, 汪力. 金属导线偶合THz表面等离子体波. 物理学报, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [17] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [18] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振. 物理学报, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [19] 花 磊, 宋国峰, 郭宝山, 汪卫敏, 张 宇. 中红外下半导体掺杂调制的表面等离子体透射增强效应. 物理学报, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [20] 高建霞, 宋国峰, 郭宝山, 甘巧强, 陈良惠. 表面等离子体调制的纳米孔径垂直腔面发射激光器. 物理学报, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
计量
  • 文章访问数:  6075
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-19
  • 修回日期:  2015-09-05
  • 刊出日期:  2015-12-05

/

返回文章
返回