搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究

赵佰强 张耘 邱晓燕 王学维

引用本文:
Citation:

Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究

赵佰强, 张耘, 邱晓燕, 王学维

First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals

Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei
PDF
导出引用
  • 利用基于密度泛函理论的第一性原理对Cu, Fe单掺及共掺LiNbO3晶体的电子结构和光学性质进行了计算. 结果显示: Cu, Fe单掺杂LiNbO3晶体禁带内均产生了杂质能级, 主要由Cu 3d, Fe 3d轨道及O 2p轨道贡献; 共掺LiNbO3晶体禁带内出现了双能级结构, 深能级由Cu 3d和O 2p轨道贡献, 浅能级由Fe 3d和O 2p轨道贡献. Cu, Fe单掺和共掺LiNbO3晶体带隙依次缩小, 在可见光区的光吸收明显增强. 共掺LiNbO3在445和630 nm左右分别表现出一个宽吸收峰, 比单掺LiNbO3晶体表现出更好的光吸收性质. 研究表明, Fe占Nb位比Fe占Li位的双掺样品在双光存储应用中更有优势; 同时, 浓度比[Fe2+]/[Fe3+]值的适当降低有助于这种优势的形成.
    The binding energies, electronic structures and optical properties of LiNbO3 and Cu/Fe doped LiNbO3 crystals are investigated by first principles based on the density functional theory in this paper. The supersell structures of crystals are established each with 60 atoms, including five models: pure LiNbO3, LN1 (Cu2+ occupy Li+ site), LN2 (Fe3+ occupy Li+ site), LN3 (Cu2+ occupy Li+site and Fe3+ occupy Li+ site) and LN4 (Cu2+ occupy Li+ site and Fe3+ occupy Nb5+ site). The optimized results show that the total energies of all models can achieve certain stable values, which means that the models accord with the actual crystal structures. The impurity energy levels of Cu and Fe doped LiNbO3 crystals appear within the band gaps, which are contributed by Cu 3d orbital, Fe 3d orbital and O 2p orbital; in co-doped LiNbO3, Cu offers deep energy level and Fe offers shallow energy level within the band gaps. There are two wide absorption peaks appearing respectively at 445 nm and 630 nm in co-doped LiNbO3 crystal, which correspond to the electron transitions from Eg orbital of Cu to Nb 4d orbital and T2g orbital of Fe to Nb 4d orbital respectively; the absorption edge of Cu, Fe mono and co-doped LiNbO3 crystals are red-shift successively, which coincides with the variation of band gape. The light absorption intensity of co-doped LiNbO3 crystal is stronger than that of mono-doped LiNbO3 crystal. The co-doped sample light absorption property is related to Fe site occupation. In this paper, it is suggested that the co-doped sample with Fe at Nb site is more competitive than that with Fe at Li site in optical volume holographic storage applications, and that reducing properly [Fe2+]/[Fe3+] value may be conducible to the formation of this advantage.
      通信作者: 张耘, yzhang@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11274257)资助的课题.
      Corresponding author: Zhang Yun, yzhang@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274257).
    [1]

    Li X C, Qu X D, Zhao X J, Meng X J, Zhang L L 2013 Chin. Phys. B 22 024203

    [2]

    Shen Y, Zhang G Q, Yu W B, Guo Z Z, Zhao Y Q 2012 Acta Phys. Sin. 61 184205 (in Chinese) [申岩, 张国庆, 于文斌, 郭志忠, 赵业权 2012 物理学报 61 184205]

    [3]

    Micheron F, Bismuth G 1972 Appl. Phys. Lett. 20 79

    [4]

    Amodei J J, Staebler D L 1971 Appl. Phys. Lett. 18 540

    [5]

    Buse K, Adibi A, Psaltis D 1998 Nature 393 665

    [6]

    Liu D A, Liu L R, Zhou C H, Ren L Y, Li G G 2002 Appl. Opt. 41 6809

    [7]

    Xu C, Leng Xu S, Xu L, Wen A H, Xu Y H 2012 Opt. Commun. 285 3868

    [8]

    Liu Y W, Liu L R, Xu L Y, Zhou C H 2000 Opt. Commun. 181 47

    [9]

    Cheng H J, Shi L H, Yan W B, Chen G F, Shen J, Shen X N, Li Y X 2010 Chin. Phys. B 19 084203

    [10]

    Veithen M, Gonze X, Ghosez P 2004 Phys. Rev. Lett. 93 187401

    [11]

    Ching W Y, Gu Z Q, Xu Y N 1994 Phys. Rev. B 50 1992

    [12]

    Abrahams S C, Hamilton W C, Reddy J M 1966 J. Phys. Chem. Solids 27 1013

    [13]

    Kong Y F, Xu J J, Zhang G Y 2005 Multi-function Photoelectric Materials LiNbO3 Crystal (Beijing: Sciences Press) pp42, 43 (in Chinese) [孔勇发, 许京军, 张光寅 2005 多功能光电材料-铌酸锂晶体 (北京: 科学出版社) 第42, 43页]

    [14]

    Zaldo C, Prieto C 1992 Ferroelectrics 134 47

    [15]

    Zheng W, Gui Q, Xu Y H 2008 Cryst. Res. Technol. 43 526

    [16]

    Xu H X, Chernatynskiy A, Lee D, Sinnott S B, Gopalan V, Dierolf V, Phillpot S R 2010 Phys. Rev. B 82 184109

    [17]

    Segall M D, Philip Lindan J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [18]

    Mamoun S, Merad A E, Guilbert L 2013 Comput. Mater. Sci. 79 125

    [19]

    Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2015 Acta Phys. Sin. 64 124210 (in Chinese) [赵佰强, 张耘, 邱晓燕, 王学维 2015 物理学报 64 124210]

    [20]

    Ma Q M, Xie Z, Wang J, Liu Y, Li Y C 2007 Solid State Commun. 142 114

    [21]

    Xu H X, Lee D, He J, Sinnott S B, Gopalan V, Dierolf V, Phillpot S R 2008 Phys. Rev. B 78 174103

    [22]

    Schirmer O F, Thiemann O, Whlecke M 1991 J. Phys. Chem. Solids 52 185

    [23]

    Tsuboi T, Grinberg M, Kaczmarek S M 2002 J. Alloys Compd. 341 333

    [24]

    Kar S, Verma S, Bartwal K S 2008 Cryst. Growth Des. 8 4424

    [25]

    Su Y C, Xiao L H, Fu Y C, Zhang P F, Peng P 2011 Sci. China Ser. G 41 58 (in Chinese) [苏玉长, 肖立华, 伏云昌, 张鹏飞, 彭平 2011 中国科学G 辑:物理学 力学 天文学 41 58]

    [26]

    Sun X D, Luo S H, Wang J, Jiang Y Y, Shi H X 2009 J. Phys. D: Appl. Phys. 42 115413

    [27]

    Xu C, Leng X S, Mo Y, Wang Y J, Cao L C, Yang H H, Xu Y H 2011 J. Cryst. Growth 318 665

    [28]

    Pankratov V, Millers D, Grigorjeva L, Matkovskii A O, Potera P, Pracka I, kasiewicz T 2003 Opt. Mater. 22 257

    [29]

    Wang Y J, Mo Y, Wen A H, Xu C, Leng X S, Zhang C L, Xu L, Xu Y H 2011 J. Chin. Ceram. Soc. 39 355 (in Chinese) [王义杰, 莫阳, 文爱华, 徐超, 冷雪松, 张春雷, 徐磊, 徐玉恒 2011 硅酸盐学报 39 355]

    [30]

    Hou J Y, Tao S Q, Jiang Z Q 2004 J. Optoelectron. Laser 15 594 (in Chinese) [候金英, 陶世荃, 江竹青 2004 光电子 15 594]

    [31]

    Hou J Y, Jiang Z Q, Liu G Q, Tao S Q 2002 Proceedings of the SPIE International Conference on Electronic Imaging and Multimedia Technology, Photonics Asia Shanghai, China, October 14-18, 2002 p199

    [32]

    Ren L Y, Liu L R, Liu D A, Zhou C H, Li G G 2003 Opt. Mater. 23 261

  • [1]

    Li X C, Qu X D, Zhao X J, Meng X J, Zhang L L 2013 Chin. Phys. B 22 024203

    [2]

    Shen Y, Zhang G Q, Yu W B, Guo Z Z, Zhao Y Q 2012 Acta Phys. Sin. 61 184205 (in Chinese) [申岩, 张国庆, 于文斌, 郭志忠, 赵业权 2012 物理学报 61 184205]

    [3]

    Micheron F, Bismuth G 1972 Appl. Phys. Lett. 20 79

    [4]

    Amodei J J, Staebler D L 1971 Appl. Phys. Lett. 18 540

    [5]

    Buse K, Adibi A, Psaltis D 1998 Nature 393 665

    [6]

    Liu D A, Liu L R, Zhou C H, Ren L Y, Li G G 2002 Appl. Opt. 41 6809

    [7]

    Xu C, Leng Xu S, Xu L, Wen A H, Xu Y H 2012 Opt. Commun. 285 3868

    [8]

    Liu Y W, Liu L R, Xu L Y, Zhou C H 2000 Opt. Commun. 181 47

    [9]

    Cheng H J, Shi L H, Yan W B, Chen G F, Shen J, Shen X N, Li Y X 2010 Chin. Phys. B 19 084203

    [10]

    Veithen M, Gonze X, Ghosez P 2004 Phys. Rev. Lett. 93 187401

    [11]

    Ching W Y, Gu Z Q, Xu Y N 1994 Phys. Rev. B 50 1992

    [12]

    Abrahams S C, Hamilton W C, Reddy J M 1966 J. Phys. Chem. Solids 27 1013

    [13]

    Kong Y F, Xu J J, Zhang G Y 2005 Multi-function Photoelectric Materials LiNbO3 Crystal (Beijing: Sciences Press) pp42, 43 (in Chinese) [孔勇发, 许京军, 张光寅 2005 多功能光电材料-铌酸锂晶体 (北京: 科学出版社) 第42, 43页]

    [14]

    Zaldo C, Prieto C 1992 Ferroelectrics 134 47

    [15]

    Zheng W, Gui Q, Xu Y H 2008 Cryst. Res. Technol. 43 526

    [16]

    Xu H X, Chernatynskiy A, Lee D, Sinnott S B, Gopalan V, Dierolf V, Phillpot S R 2010 Phys. Rev. B 82 184109

    [17]

    Segall M D, Philip Lindan J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [18]

    Mamoun S, Merad A E, Guilbert L 2013 Comput. Mater. Sci. 79 125

    [19]

    Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2015 Acta Phys. Sin. 64 124210 (in Chinese) [赵佰强, 张耘, 邱晓燕, 王学维 2015 物理学报 64 124210]

    [20]

    Ma Q M, Xie Z, Wang J, Liu Y, Li Y C 2007 Solid State Commun. 142 114

    [21]

    Xu H X, Lee D, He J, Sinnott S B, Gopalan V, Dierolf V, Phillpot S R 2008 Phys. Rev. B 78 174103

    [22]

    Schirmer O F, Thiemann O, Whlecke M 1991 J. Phys. Chem. Solids 52 185

    [23]

    Tsuboi T, Grinberg M, Kaczmarek S M 2002 J. Alloys Compd. 341 333

    [24]

    Kar S, Verma S, Bartwal K S 2008 Cryst. Growth Des. 8 4424

    [25]

    Su Y C, Xiao L H, Fu Y C, Zhang P F, Peng P 2011 Sci. China Ser. G 41 58 (in Chinese) [苏玉长, 肖立华, 伏云昌, 张鹏飞, 彭平 2011 中国科学G 辑:物理学 力学 天文学 41 58]

    [26]

    Sun X D, Luo S H, Wang J, Jiang Y Y, Shi H X 2009 J. Phys. D: Appl. Phys. 42 115413

    [27]

    Xu C, Leng X S, Mo Y, Wang Y J, Cao L C, Yang H H, Xu Y H 2011 J. Cryst. Growth 318 665

    [28]

    Pankratov V, Millers D, Grigorjeva L, Matkovskii A O, Potera P, Pracka I, kasiewicz T 2003 Opt. Mater. 22 257

    [29]

    Wang Y J, Mo Y, Wen A H, Xu C, Leng X S, Zhang C L, Xu L, Xu Y H 2011 J. Chin. Ceram. Soc. 39 355 (in Chinese) [王义杰, 莫阳, 文爱华, 徐超, 冷雪松, 张春雷, 徐磊, 徐玉恒 2011 硅酸盐学报 39 355]

    [30]

    Hou J Y, Tao S Q, Jiang Z Q 2004 J. Optoelectron. Laser 15 594 (in Chinese) [候金英, 陶世荃, 江竹青 2004 光电子 15 594]

    [31]

    Hou J Y, Jiang Z Q, Liu G Q, Tao S Q 2002 Proceedings of the SPIE International Conference on Electronic Imaging and Multimedia Technology, Photonics Asia Shanghai, China, October 14-18, 2002 p199

    [32]

    Ren L Y, Liu L R, Liu D A, Zhou C H, Li G G 2003 Opt. Mater. 23 261

  • [1] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. 电场对GaN/g-C3N4异质结电子结构和光学性质影响的第一性原理研究. 物理学报, 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [2] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] 王闯, 赵永红, 刘永. Ga1–xCrxSb (x = 0.25, 0.50, 0.75) 磁学和光学性质的第一性原理研究. 物理学报, 2019, 68(17): 176301. doi: 10.7498/aps.68.20182305
    [4] 王磊, 涂兵田. 含磷酸胍基间作用的磷酸双乙酸胍晶体电子结构与光学性质研究. 物理学报, 2019, 68(6): 064210. doi: 10.7498/aps.68.20181627
    [5] 程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂. Cu,O共掺杂AlN晶体电子结构与光学性质研究. 物理学报, 2018, 67(4): 047101. doi: 10.7498/aps.67.20172096
    [6] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [7] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究. 物理学报, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [8] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [9] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [10] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [11] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [12] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究 . 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [13] 潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威. -AlON晶体电子结构和光学性质研究. 物理学报, 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [14] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算. 物理学报, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [15] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [16] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [17] 孔祥兰, 侯芹英, 苏希玉, 齐延华, 支晓芬. Ba0.5Sr0.5TiO3电子结构和光学性质的第一性原理研究. 物理学报, 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [18] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 潘洪哲, 徐 明, 祝文军, 周海平. β-Si3N4电子结构和光学性质的第一性原理研究. 物理学报, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
计量
  • 文章访问数:  4043
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-22
  • 修回日期:  2015-09-07
  • 刊出日期:  2016-01-05

Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究

  • 1. 西南大学物理科学与技术学院, 重庆 400715
  • 通信作者: 张耘, yzhang@swu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11274257)资助的课题.

摘要: 利用基于密度泛函理论的第一性原理对Cu, Fe单掺及共掺LiNbO3晶体的电子结构和光学性质进行了计算. 结果显示: Cu, Fe单掺杂LiNbO3晶体禁带内均产生了杂质能级, 主要由Cu 3d, Fe 3d轨道及O 2p轨道贡献; 共掺LiNbO3晶体禁带内出现了双能级结构, 深能级由Cu 3d和O 2p轨道贡献, 浅能级由Fe 3d和O 2p轨道贡献. Cu, Fe单掺和共掺LiNbO3晶体带隙依次缩小, 在可见光区的光吸收明显增强. 共掺LiNbO3在445和630 nm左右分别表现出一个宽吸收峰, 比单掺LiNbO3晶体表现出更好的光吸收性质. 研究表明, Fe占Nb位比Fe占Li位的双掺样品在双光存储应用中更有优势; 同时, 浓度比[Fe2+]/[Fe3+]值的适当降低有助于这种优势的形成.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回