搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

25T超导磁体优化中线圈数量影响分析

朱光 刘建华 程军胜 冯忠奎 戴银明 王秋良

引用本文:
Citation:

25T超导磁体优化中线圈数量影响分析

朱光, 刘建华, 程军胜, 冯忠奎, 戴银明, 王秋良

Effects of different coil combinations on the optimal design of a 25 T superconducting magnet

Zhu Guang, Liu Jian-Hua, Cheng Jun-Sheng, Feng Zhong-Kui, Dai Yin-Min, Wang Qiu-Liang
PDF
导出引用
  • 20 T以上强磁场在高场科学工程中有着不可替代的作用. 电工研究所正在研制一个25 T全超导磁体系统, 包括15 T背景磁场和10 T高温超导内插磁体. 在磁体的设计和优化中, 线圈的数量和种类对于最终优化结果十分关键. 为了研究磁体数量和磁体相关参数的关系, 计算了20 组不同的线圈组合下磁体的优化结果. 优化中除了考虑必要的限制条件以外, 还采用了一种结合局部优化算法和全局优化算法的方法. 通过对比分析发现, 线圈数量和磁体造价之间, 存在一个“V”形的关系. 更进一步地, 本文分析了不同超导体在磁体中应该贡献的最佳磁场, 以及背景磁体统一供电给优化结果带来的影响.
    High field above 20 T is required in diverse physical programs and nuclear magnetic resonance (NMR) systems. For intended science program requirements, as a demonstration of the development in high field superconducting magnet technology, a 25 T (4.2 K) 52 mm cold-bore all-superconducting magnet consisting of a 10 T high-temperature superconducting insert magnet and a 15 T low-temperature superconducting background magnet, is being developed at the Institute of Electrical Engineering, Chinese Academy of Sciences. The development of such a magnet requires its optimization, and the choosing the number and type of coils is crucial to the final optimal design. However there are few researches focusing on the effect of coil combinations. To study the relationship between the number of coils and the magnet parameters, we first discuss the magnet optimization. The objective function of the optimization is defined as the weighted function of coil volume according to the costs of different superconductors, and the following constraint conditions are taken into considerations: center field, YBCO conductor characterization, hoop stress in Nb3Sn coils, and the critical performances of these wires. All those constraint conditions are taken in the analytical form, and the magnetic field, stress results are verified with the finite element method. To guarantee the reliability of the optimal results, in addition to consider the constraint conditions, a method of combining global optimization and local optimization is adopted. 20 different coil combinations are selected according to the investigation of superconducting wires, and their optimal results are calculated. The following conclusions are drawn from the analyses of these results. Firstly, in the design of high field magnet, the number of coils and magnet cost demonstrate a "V"-shaped relationship, that is, there exist an optimal number of coils. Secondly, when the objective function demonstrates good values, Nb3Sn coils generate fields in a range of 6-7 T, whereas NbTi coils generate fields in a range of 8-9 T. Finally, the objective functions under two different situations, i.e., Nb3Sn coils and NbTi coils are powered together and separately, are calculated. From the comparisons we find that the effect of reducing one power supply is acceptable when the number of coils is not too big.
      通信作者: 王秋良, qiuliang@mail.iee.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 51307163, 51477167)资助的课题.
      Corresponding author: Wang Qiu-Liang, qiuliang@mail.iee.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51307163, 51477167).
    [1]

    Wang Q L 2007 High Magnetic Field Superconducting Magnet (Beijing: Science Press) pp118-128 (in Chinese) [王秋良 2007 高磁场超导磁体科学(北京: 科学出版社) 第118-128页]

    [2]

    Hahn S, Bascuñán J, Yao W, Iwasa Y 2010 Physica C 470 1721

    [3]

    Bird M D, Bai H, Bole S 2009 IEEE Trans. Appl. Supercond. 19 1612

    [4]

    Hazelton D W, Selvamanickam V, Duval J M 2009 IEEE Trans. Appl. Supercond. 19 2218

    [5]

    Xu A, Jaroszynski J J, Kametani F, Chen Z, Larbalestier D C 2010 Supercond. Sci. Technol. 23 014003

    [6]

    Lombardo V, Barzi E, Norcia G, Lamm M, Turrioni D, Van T, Raes A, Zlobin T 2010 Advances in Cryogenic Engineering 55 246

    [7]

    Lee S Y, Kwak S Y, Seo J H, Park S H, Kim W S, Lee J K, Bae J H, Kim S H, Sim K D, Seong K C, Jung H K, Choi K, Hahn S 2009 Physica C 469 1789

    [8]

    Noguchi S, Tsuda M 2011 IEEE Trans. Appl. Supercond. 21 2279

    [9]

    Noguchi S, YInaba Y, Igarashi H 2008 IEEE Trans. Appl. Supercond. 18 762

    [10]

    Markiewicz W D, Larbalestier D C, Weijers H W, Voran A J, Pickard K W 2012 IEEE Trans. Appl. Supercond. 22 4300704

    [11]

    Lombardo V, Barzi E, Norcia G, Lamm M, Turrioni D, van Raes T 2010 Advances in Cryogenic Engineering 55A 246

    [12]

    Braccini V, Xu A, Jaroszynski J, Xin Y, Larbalestier D C 2011 Supercond. Sci. Technol. 24 03500

    [13]

    Turrioni D, Barzi E, Lamm M, Lombardo V, Thieme C 2008 Advances in Cryogenic Engineering 54 451

    [14]

    Yamada R, Kikuchi A, Barzi E, Chlachidze G, Rusy A 2010 IEEE Trans. Appl. Supercond. 20 1399

    [15]

    Osamura K, Suzuki H, Sato M, Harjo S, Ochiai S 2013 Supercond. Sci. Technol. 26 094001

    [16]

    Asano T, Takao T, Iwamura T, Minowa S, Sato H 2008 IEEE Trans. Appl. Supercond. 18 583

  • [1]

    Wang Q L 2007 High Magnetic Field Superconducting Magnet (Beijing: Science Press) pp118-128 (in Chinese) [王秋良 2007 高磁场超导磁体科学(北京: 科学出版社) 第118-128页]

    [2]

    Hahn S, Bascuñán J, Yao W, Iwasa Y 2010 Physica C 470 1721

    [3]

    Bird M D, Bai H, Bole S 2009 IEEE Trans. Appl. Supercond. 19 1612

    [4]

    Hazelton D W, Selvamanickam V, Duval J M 2009 IEEE Trans. Appl. Supercond. 19 2218

    [5]

    Xu A, Jaroszynski J J, Kametani F, Chen Z, Larbalestier D C 2010 Supercond. Sci. Technol. 23 014003

    [6]

    Lombardo V, Barzi E, Norcia G, Lamm M, Turrioni D, Van T, Raes A, Zlobin T 2010 Advances in Cryogenic Engineering 55 246

    [7]

    Lee S Y, Kwak S Y, Seo J H, Park S H, Kim W S, Lee J K, Bae J H, Kim S H, Sim K D, Seong K C, Jung H K, Choi K, Hahn S 2009 Physica C 469 1789

    [8]

    Noguchi S, Tsuda M 2011 IEEE Trans. Appl. Supercond. 21 2279

    [9]

    Noguchi S, YInaba Y, Igarashi H 2008 IEEE Trans. Appl. Supercond. 18 762

    [10]

    Markiewicz W D, Larbalestier D C, Weijers H W, Voran A J, Pickard K W 2012 IEEE Trans. Appl. Supercond. 22 4300704

    [11]

    Lombardo V, Barzi E, Norcia G, Lamm M, Turrioni D, van Raes T 2010 Advances in Cryogenic Engineering 55A 246

    [12]

    Braccini V, Xu A, Jaroszynski J, Xin Y, Larbalestier D C 2011 Supercond. Sci. Technol. 24 03500

    [13]

    Turrioni D, Barzi E, Lamm M, Lombardo V, Thieme C 2008 Advances in Cryogenic Engineering 54 451

    [14]

    Yamada R, Kikuchi A, Barzi E, Chlachidze G, Rusy A 2010 IEEE Trans. Appl. Supercond. 20 1399

    [15]

    Osamura K, Suzuki H, Sato M, Harjo S, Ochiai S 2013 Supercond. Sci. Technol. 26 094001

    [16]

    Asano T, Takao T, Iwamura T, Minowa S, Sato H 2008 IEEE Trans. Appl. Supercond. 18 583

  • [1] 张召泉, 时朋朋, 苟晓凡. 铁磁板磁巴克豪森应力检测的解析模型. 物理学报, 2022, 71(9): 097501. doi: 10.7498/aps.71.20212253
    [2] 蒋晓华, 薛芃, 黄伟灿, 李烨. 14 T全身超导MRI磁体的技术挑战 —大规模应用强场超导磁体未来十年的发展目标之一. 物理学报, 2021, 70(1): 018401. doi: 10.7498/aps.70.20202042
    [3] 汪天龙, 邱清泉, 靖立伟, 张小波. 圆形复合式磁控溅射阴极设计及其放电特性模拟研究. 物理学报, 2018, 67(7): 070703. doi: 10.7498/aps.67.20172576
    [4] 张兴刚, 戴丹. 二维颗粒堆积中压力问题的格点系统模型. 物理学报, 2017, 66(20): 204501. doi: 10.7498/aps.66.204501
    [5] 肖友鹏, 王涛, 魏秀琴, 周浪. 硅异质结太阳电池的物理机制和优化设计. 物理学报, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [6] 杜晓纪, 王为民, 兰贤辉, 李超. 1.5 T关节磁共振成像超导磁体的设计、制作与测试. 物理学报, 2017, 66(24): 248401. doi: 10.7498/aps.66.248401
    [7] 李策, 冯国英, 杨火木. 流体直接冷却薄板条介质温度及应力的解析表达. 物理学报, 2016, 65(5): 054204. doi: 10.7498/aps.65.054204
    [8] 常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波. 基于加权实数编码遗传算法的超材料优化设计. 物理学报, 2014, 63(8): 087804. doi: 10.7498/aps.63.087804
    [9] 于红云. 超导磁体剩余磁场对软磁材料测试的影响. 物理学报, 2014, 63(4): 047502. doi: 10.7498/aps.63.047502
    [10] 冯忠奎, 胡格丽, 许莹, 朱光, 周峰, 戴银明, 王秋良. 开放式自屏蔽全身成像高场超导MRI磁体优化设计. 物理学报, 2013, 62(23): 230701. doi: 10.7498/aps.62.230701
    [11] 倪志鹏, 王秋良, 严陆光. 短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法. 物理学报, 2013, 62(2): 020701. doi: 10.7498/aps.62.020701
    [12] 张国庆, 杜晓纪, 赵玲, 宁飞鹏, 姚卫超, 朱自安. 基于0—1整数线性规划的自屏蔽磁共振成像超导磁体设计. 物理学报, 2012, 61(22): 228701. doi: 10.7498/aps.61.228701
    [13] 高仁璟, 王国明, 刘书田, 唐祯安. 具有特定频段的左手材料构造与设计优化. 物理学报, 2012, 61(5): 054103. doi: 10.7498/aps.61.054103
    [14] 易红霞, 肖刘, 刘濮鲲, 郝保良, 李飞, 李国超. 基于电子注可回收能力的空间行波管慢波结构的优化设计. 物理学报, 2011, 60(6): 068403. doi: 10.7498/aps.60.068403
    [15] 王栋. 滤波-荧光谱仪的优化设计. 物理学报, 2010, 59(1): 443-446. doi: 10.7498/aps.59.443
    [16] 周旺民, 蔡承宇, 王崇愚, 尹姝媛. 埋置量子点应力分布的有限元分析. 物理学报, 2009, 58(8): 5585-5590. doi: 10.7498/aps.58.5585
    [17] 文玉华, 邵桂芳, 朱梓忠. 金属纳米线应力分布特征的原子级模拟研究. 物理学报, 2008, 57(2): 1013-1018. doi: 10.7498/aps.57.1013
    [18] 任 驹, 郑建邦, 赵建林. 给体-受体型有机太阳电池光敏层的优化设计. 物理学报, 2007, 56(5): 2868-2872. doi: 10.7498/aps.56.2868
    [19] 杨晓苹, 翟宏琛. 双随机相位加密中相息图的优化设计. 物理学报, 2005, 54(4): 1578-1582. doi: 10.7498/aps.54.1578
    [20] 谢晓明, 蒋亦民, 王焕友, 曹晓平, 刘 佑. 颗粒堆密度变化对堆底压力分布的影响. 物理学报, 2003, 52(9): 2194-2199. doi: 10.7498/aps.52.2194
计量
  • 文章访问数:  5233
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-18
  • 修回日期:  2015-12-21
  • 刊出日期:  2016-03-05

/

返回文章
返回