搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于忆阻器的时滞混沌系统及伪随机序列发生器

吴洁宁 王丽丹 段书凯

引用本文:
Citation:

基于忆阻器的时滞混沌系统及伪随机序列发生器

吴洁宁, 王丽丹, 段书凯

A memristor-based time-delay chaotic systems and pseudo-random sequence generator

Wu Jie-Ning, Wang Li-Dan, Duan Shu-Kai
PDF
导出引用
  • 忆阻器作为可调控的非线性元件,很容易实现混沌信号的产生.基于忆阻器的混沌系统是当下研究的热点,但是基于忆阻器的时滞混沌系统目前却鲜有人涉足.因此,本文提出了一个新型忆阻时滞混沌系统.时延的存在增加了系统的复杂性,使系统能够产生更丰富、更复杂的动力学行为.我们对提出的忆阻时滞混沌系统进行了稳定性分析,确定了显示系统稳定平衡点的相应参数区域.讨论了在不同参数情况下的系统状态,系统呈现出形态各异的混沌吸引子相图,表现出丰富的混沌特性和非线性特性.最后,将系统用于产生伪随机序列,并经过实验验证,我们提出的系统具有良好的自相关性和互相关性,同时能获得相对显著的近似熵.该时滞混沌系统具有复杂的动力学行为和良好的随机性,能满足扩频通信和图像加密等众多领域的应用需要.
    Memristor, a controllable nonlinear element, is easy to generate a chaotic signal. More significantly, it can improve the complexity of the chaotic system and the randomness of signals. Although the memristor chaotic system is a hot spot of research currently, little attention has been paid to the memristive time-delayed chaotic system. Therefore, a new memristor-based time-delayed chaotic system is proposed in this paper. We construct the time-delayed chaotic system with single delay time by using the nonlinear relationship between the memristance and charge of memristor. The existence of time delay enhances the complexity of chaotic system, which makes the system produce richer and more complex dynamics. In order to study the complex dynamic characteristics of this memristive time-delayed system, we investigate the proposed system by theoretical derivation, numerical simulation, stabilization of equilibrium points, and power spectrum. In addition, the corresponding parameter region of the stable equilibrium point of the system is discussed in detail. Then, we discuss the effect of parameter variation on the dynamic behavior of the system, and a series of phase diagrams with different time-delayed parameters and system parameters is described by numerical simulation. We find that different combinations of parameters and slight changes of parameters can make the system a completely different phase diagram, which indicates that the proposed system has rich nonlinear characteristic. Moreover, the proposed time-delayed system is used to generate pseudo random sequences, and the experimental results show that the proposed system has good self-correlation, cross-correlation, and the significant approximate entropy. According to the theoretical analyses and experimental results, we conclude that the proposed new time-delayed chaotic system has complex dynamic behavior and good randomness, which can meet the needs of the applications in spread spectrum communication, image encryption and many other fields. This research provides a significant reference for further studying the usage of memristor.
      通信作者: 王丽丹, ldwang@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61372139,61672436,61571372)、新世纪优秀人才支持计划(批准号:教技函[2013]47号)和中央高校基本科研业务费专项资金(批准号:XDJK2016A001,XDJK2014A009)资助的课题.
      Corresponding author: Wang Li-Dan, ldwang@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372139, 61672436, 61571372), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No.[2013]47), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. XDJK2016A001, XDJK2014A009).
    [1]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Corinto F, Ascoli A, Gilli M 2011 IEEE Trans. Circuits Syst. I, Reg. Papers. 58 1323

    [4]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

    [5]

    Yang J J, Pickett M D, Li X, Ohlberg D A, Stewart D R, Williams R S 2008 Nat. Nanotech. 3 429

    [6]

    Wang L D, Li H F, Duan S K, Huang T W, Wang H M 2016 Neurocomputing 171 23

    [7]

    Sah M P, Yang C, Kim H, Chua L 2012 Sensors 12 3587

    [8]

    Hu X F, Chen G R, Duan S K, Feng G 2014 In Memristor Networks (Springer International Publishing) pp351-364

    [9]

    Itoh M, Chua L O 2008 Int. J. Bifurcat. Chaos 18 3183

    [10]

    Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 417

    [11]

    Bao B C, Liu Z, Xu J P 2010 Electron. Lett. 46 228

    [12]

    Min G Q, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 210507 (in Chinese)[闵国旗, 王丽丹, 段书凯2015物理学报64 210507]

    [13]

    Stork M, Hrusak J, Mayer D 2009 International Conference on Electrical and Electronics Engineering, 2009 ELECO Bursa, Turkey, November 5-8, 2009 pp58-60

    [14]

    Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int. J. Bifurcat. Chaos 22 1250205

    [15]

    Li H F, Wang L D, Duan S K 2014 Int. J. Bifurcat. Chaos 24 1450099

    [16]

    Cafagna D, Grassi G 2012 Nonlinear Dyn. 70 1185

    [17]

    Yang Y F, Leng J L, Li Q D 2014 Acta Phys. Sin. 63 080502 (in Chinese)[杨芳艳, 冷家丽, 李清都2014物理学报63 080502]

    [18]

    Mackey M C, Glass L 1977 Science 197 287

    [19]

    Lakshmanan M, Senthilkumar D V 2011 Dynamics of Nonlinear Time-Delay Systems (Springer Science & Business Media Press) pp27-36

    [20]

    Ikeda K, Daido H, Akimoto O 1980 Phys. Rev. Lett. 45 709

    [21]

    Boutle I, Taylor R H S, Römer R A 2007 Am. J. Phys. 75 15

    [22]

    Wu F X 2009 Adv. Complex Syst. 12 3

    [23]

    Liao X X, Chen G R 2003 Int. J. Bifurcat. Chaos 13 207

    [24]

    Lu J Q, Cao J D, Ho D W C 2008 IEEE Trans. Circuits Syst. I, Reg. Papers 55 1347

    [25]

    Zhang X M, Chen J F, Peng J H 2011 Int. J. Bifurcat. Chaos 21 2547

    [26]

    Guan G R, Wu C M, Jia Q 2015 Acta Phys. Sin. 64 020501 (in Chinese)[官国荣, 吴成茂, 贾倩2015物理学报64 020501]

  • [1]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Corinto F, Ascoli A, Gilli M 2011 IEEE Trans. Circuits Syst. I, Reg. Papers. 58 1323

    [4]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

    [5]

    Yang J J, Pickett M D, Li X, Ohlberg D A, Stewart D R, Williams R S 2008 Nat. Nanotech. 3 429

    [6]

    Wang L D, Li H F, Duan S K, Huang T W, Wang H M 2016 Neurocomputing 171 23

    [7]

    Sah M P, Yang C, Kim H, Chua L 2012 Sensors 12 3587

    [8]

    Hu X F, Chen G R, Duan S K, Feng G 2014 In Memristor Networks (Springer International Publishing) pp351-364

    [9]

    Itoh M, Chua L O 2008 Int. J. Bifurcat. Chaos 18 3183

    [10]

    Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 417

    [11]

    Bao B C, Liu Z, Xu J P 2010 Electron. Lett. 46 228

    [12]

    Min G Q, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 210507 (in Chinese)[闵国旗, 王丽丹, 段书凯2015物理学报64 210507]

    [13]

    Stork M, Hrusak J, Mayer D 2009 International Conference on Electrical and Electronics Engineering, 2009 ELECO Bursa, Turkey, November 5-8, 2009 pp58-60

    [14]

    Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int. J. Bifurcat. Chaos 22 1250205

    [15]

    Li H F, Wang L D, Duan S K 2014 Int. J. Bifurcat. Chaos 24 1450099

    [16]

    Cafagna D, Grassi G 2012 Nonlinear Dyn. 70 1185

    [17]

    Yang Y F, Leng J L, Li Q D 2014 Acta Phys. Sin. 63 080502 (in Chinese)[杨芳艳, 冷家丽, 李清都2014物理学报63 080502]

    [18]

    Mackey M C, Glass L 1977 Science 197 287

    [19]

    Lakshmanan M, Senthilkumar D V 2011 Dynamics of Nonlinear Time-Delay Systems (Springer Science & Business Media Press) pp27-36

    [20]

    Ikeda K, Daido H, Akimoto O 1980 Phys. Rev. Lett. 45 709

    [21]

    Boutle I, Taylor R H S, Römer R A 2007 Am. J. Phys. 75 15

    [22]

    Wu F X 2009 Adv. Complex Syst. 12 3

    [23]

    Liao X X, Chen G R 2003 Int. J. Bifurcat. Chaos 13 207

    [24]

    Lu J Q, Cao J D, Ho D W C 2008 IEEE Trans. Circuits Syst. I, Reg. Papers 55 1347

    [25]

    Zhang X M, Chen J F, Peng J H 2011 Int. J. Bifurcat. Chaos 21 2547

    [26]

    Guan G R, Wu C M, Jia Q 2015 Acta Phys. Sin. 64 020501 (in Chinese)[官国荣, 吴成茂, 贾倩2015物理学报64 020501]

  • [1] 胡悦, 曹凤朝, 董仁婧, 郝辰悦, 刘大禾, 石锦卫. 共焦腔稳定性突变的分析. 物理学报, 2020, 69(22): 224202. doi: 10.7498/aps.69.20200814
    [2] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [3] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [4] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统. 物理学报, 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    [5] 闫登卫, 王丽丹, 段书凯. 基于忆阻器的多涡卷混沌系统及其脉冲同步控制. 物理学报, 2018, 67(11): 110502. doi: 10.7498/aps.67.20180025
    [6] 王伟, 曾以成, 孙睿婷. 含三个忆阻器的六阶混沌电路研究. 物理学报, 2017, 66(4): 040502. doi: 10.7498/aps.66.040502
    [7] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [8] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [9] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器. 物理学报, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [10] 王日兴, 贺鹏斌, 肖运昌, 李建英. 铁磁/重金属双层薄膜结构中磁性状态的稳定性分析. 物理学报, 2015, 64(13): 137201. doi: 10.7498/aps.64.137201
    [11] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析. 物理学报, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [12] 洪庆辉, 李志军, 曾金芳, 曾以成. 基于电流反馈运算放大器的忆阻混沌电路设计与仿真. 物理学报, 2014, 63(18): 180502. doi: 10.7498/aps.63.180502
    [13] 杨芳艳, 冷家丽, 李清都. 基于Chua电路的四维超混沌忆阻电路. 物理学报, 2014, 63(8): 080502. doi: 10.7498/aps.63.080502
    [14] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [15] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [16] 张立东, 贾磊, 朱文兴. 弯道交通流跟驰建模与稳定性分析. 物理学报, 2012, 61(7): 074501. doi: 10.7498/aps.61.074501
    [17] 孙宁, 张化光, 王智良. 基于分数阶滑模面控制的分数阶超混沌系统的投影同步. 物理学报, 2011, 60(5): 050511. doi: 10.7498/aps.60.050511
    [18] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现. 物理学报, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
    [19] 魏高峰, 李开泰, 冯 伟, 高洪芬. 非协调数值流形方法的稳定性和收敛性分析. 物理学报, 2008, 57(2): 639-647. doi: 10.7498/aps.57.639
    [20] 王 涛, 高自友, 赵小梅. 多速度差模型及稳定性分析. 物理学报, 2006, 55(2): 634-640. doi: 10.7498/aps.55.634
计量
  • 文章访问数:  3989
  • PDF下载量:  912
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-21
  • 修回日期:  2016-10-07
  • 刊出日期:  2017-02-05

基于忆阻器的时滞混沌系统及伪随机序列发生器

  • 1. 西南大学电子信息工程学院, 重庆 400715;
  • 2. 非线性电路与智能信息处理重庆市重点实验室, 重庆 400715
  • 通信作者: 王丽丹, ldwang@swu.edu.cn
    基金项目: 国家自然科学基金(批准号:61372139,61672436,61571372)、新世纪优秀人才支持计划(批准号:教技函[2013]47号)和中央高校基本科研业务费专项资金(批准号:XDJK2016A001,XDJK2014A009)资助的课题.

摘要: 忆阻器作为可调控的非线性元件,很容易实现混沌信号的产生.基于忆阻器的混沌系统是当下研究的热点,但是基于忆阻器的时滞混沌系统目前却鲜有人涉足.因此,本文提出了一个新型忆阻时滞混沌系统.时延的存在增加了系统的复杂性,使系统能够产生更丰富、更复杂的动力学行为.我们对提出的忆阻时滞混沌系统进行了稳定性分析,确定了显示系统稳定平衡点的相应参数区域.讨论了在不同参数情况下的系统状态,系统呈现出形态各异的混沌吸引子相图,表现出丰富的混沌特性和非线性特性.最后,将系统用于产生伪随机序列,并经过实验验证,我们提出的系统具有良好的自相关性和互相关性,同时能获得相对显著的近似熵.该时滞混沌系统具有复杂的动力学行为和良好的随机性,能满足扩频通信和图像加密等众多领域的应用需要.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回