搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

87Rb玻色-爱因斯坦凝聚体的快速实验制备

陈良超 孟增明 王鹏军

引用本文:
Citation:

87Rb玻色-爱因斯坦凝聚体的快速实验制备

陈良超, 孟增明, 王鹏军

Fast production of 87Rb Bose-Einstein condensates

Chen Liang-Chao, Meng Zeng-Ming, Wang Peng-Jun
PDF
导出引用
  • 采用二维磁光阱产生了一个快速87Rb原子流,并在高真空的三维磁光阱中实现了87Rb原子的快速俘获,进一步采用射频蒸发冷却技术实现了原子云的预冷却,然后将原子转移到远失谐的光学偶极阱中蒸发得到了玻色-爱因斯坦凝聚体. 实验上可以在25 s内完成三维磁光阱的装载(约1.01010个87Rb原子),然后经过16 s的冷却过程最终在光学偶极阱中获得5.0105个原子的玻色-爱因斯坦凝聚体. 实验重点研究了二维磁光阱的优化设计和采用蓝失谐大功率光束对四极磁阱零点的堵塞,抑制四极磁阱中原子的马约拉纳损耗,更加有效地对原子云进行预冷却.
    A rapid atomic beam of rubidium (87Rb) is produced by two-dimensional magneto-optical trap (2D MOT), and then trapped by three-dimensional magneto-optical trap (3D MOT) with high vacuum for further cooling. After a process of optical molasses cooling, atoms are reloaded into a magnetic trap, where radio frequency (RF) evaporation cooling is implemented. The precooled atoms in the magnetic trap are then transferred into a far detuning optical dipole trap, where Bose-Einstein condensate (BEC) appears by further evaporation cooling. The 3D MOT is loaded to its maximum within 25 s and then BEC is prepared in 16 s. Due to the linear intensity of magnetic trap, the frequency can be scanned fast in the RF evaporation cooling process. In our experiment, the frequency scans from 39 MHz to 15 MHz in 6 s and then scans to 2 MHz in 5 s. The number of atoms in 3D MOT is about 11010, and there are 5105 atoms in the BEC after a succession of cooling processes. To optimize the performances of 2D MOT, a special light path is constructed. And prisms with high reflectivity are used to reduce the imbalance between opposite propagating cooling +beams. Furthermore, quarter-wave plates are used to keep the polarization state of the cooling beam when reflected by prisms or mirrors. The atoms are cooled to a temperature about 15 K in the magnetic trap by RF evaporation. In such a low temperature, the loss of magnetic trap (Majorana loss) will prevent the atoms from reaching a high density, and the atoms cannot be cooled further. To reduce the loss rate of the magnetic trap, the far blue detuning light (532 nm, 18 W) is added to plug the zero point of the magnetic trap. In the optically plugged magnetic trap, atoms with high density are cooled down enough, which gives a good start for the loading of optical dipole trap.
      通信作者: 王鹏军, pengjun_wang@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2016YFA0301602)、国家自然科学基金(批准号:11234008,11361161002,11474188)和山西省自然科学基金(批准号:2014011008.2)资助的课题.
      Corresponding author: Wang Peng-Jun, pengjun_wang@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0301602), the National Natural Science Foundation of China (Grant Nos. 11234008, 11361161002, 11474188), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011008.2).
    [1]

    Spielman I B 2009 Phys. Rev. A 79 063613

    [2]

    Lin Y J, Compton R L, Jimnez-Garca K, Phillips W D, Porto J V, Spielman I B 2011 Nat. Phys. 7 531

    [3]

    Kennedy C J, Burton W C, Chung W C, Ketterle W 2015 Nat. Phys. 11 859

    [4]

    Lin Y J, Compton R L, Jimnez-Garca K, Porto J V, Spielman I B 2009 Nature 462 628

    [5]

    Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V, Spielman I B 2009 Phys. Rev. Lett. 102 130401

    [6]

    Duan L M, Demler E, LKin M D 2003 Phys. Rev. Lett. 91 090402

    [7]

    Huang Z, Zeng W, Gu Y, Liu L, Zhou L, Zhang W P 2016 Acta Phys. Sin. 65 164201 (in Chinese) [黄珍, 曾文, 古艺, 刘利, 周鲁, 张卫平 2016 物理学报 65 164201]

    [8]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [9]

    Weber T, Herbig J, Mark M, Ngerl H C, Grimm R 2003 Science 299 232

    [10]

    Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [11]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [12]

    Bai J H, Lu X G, Miao X X, Pei L Y, Wang M, Gao Y L, Wang R Q, Wu L A, Fu P M, Zuo Z C 2015 Acta Phys. Sin. 64 034206 (in Chinese) [白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春 2015 物理学报 64 034206]

    [13]

    Zhao X B, Xu Z X, Zhang L J, Wu Y L, Li S J, Wang H 2010 Acta Sin. Quantum Opt. 16 196 (in Chinese) [赵兴波, 徐忠孝, 张利军, 武跃龙, 李淑静, 王海 2010 量子光学学报 16 196]

    [14]

    Zhang Z Y, Wu Y L, Xu Z X, Chen L R, Li S J, Wang H 2013 Acta Sin. Quantum Opt. 19 340 (in Chinese) [张志英, 武跃龙, 徐忠孝, 陈力荣, 李淑静, 王海 2013 量子光学学报 19 340]

    [15]

    Meng Z M, Huang L H, Peng P, Chen L C, Fan H, Wang P J, Zhang J 2015 Acta Phys. Sin. 64 243202 (in Chinese) [孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖 2015 物理学报 64 243202]

    [16]

    Esslinger T, Bloch I, Hnsch T W 1998 Phys. Rev. A 58 2664

    [17]

    Greiner M, Mandel O, Esslinger T, Hnsch T W, Bloch I 2002 Nature 415 39

    [18]

    Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, Flling S, Pollet L, Greiner M 2010 Science 329 547

    [19]

    Hofferberth S, Lesanovsky I, Fischer B, Schumm T, Schmiedmayer J 2007 Nature 449 324

    [20]

    Fan H, Wang P J, Zhang J 2015 Acta Sin. Quantum Opt. 21 351 (in Chinese) [樊浩, 王鹏军, 张靖 2015 量子光学学报 21 351]

    [21]

    Chai S J, Wang P J, Fu Z K, Huang L H, Zhang J 2012 Acta Sin. Quantum Opt. 18 171 (in Chinese) [柴世杰, 王鹏军, 付正坤, 黄良辉, 张靖 2012 量子光学学报 18 171]

    [22]

    Wang P J, Chen H X, Xiong D Z, Yu X D, Gao F, Zhang J 2008 Acta Phys. Sin. 57 4840 (in Chinese) [王鹏军, 陈海霞, 熊德智, 于旭东, 高峰, 张靖 2008 物理学报 57 4840]

    [23]

    Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151

    [24]

    Bauer D M, Lettner M, Vo C, Rempe G, Drr S 2009 Nat. Phys. 5 339

    [25]

    Olf R, Fang F, Marti G E, Macrae A, Stamper-Kurn D M 2015 Nat. Phys. 11 720

    [26]

    Bakr W S, Gillen J I, Peng A, Flling S, Greiner M 2009 Nature 462 74

    [27]

    Xie D Z, Bu W H, Yan B 2016 Chin. Phys. B 25 053701

    [28]

    Deng S J, Shi Z Y, Diao P P, Yu Q L, Zhai H, Qi R, Wu H B 2016 Science 353 371

    [29]

    Chen Y A, Huber S D, Trotzky S, Bloch I, Altman E 2011 Nat. Phys. 7 61

    [30]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nat. Phys. 12 540

    [31]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nat. Phys. 10 314

    [32]

    Li L, Qu Q Z, Wang B, Li T, Zhao J B, Ji J W, Ren W, Zhao X, Ye M F, Yao Y Y, L D S, Liu L 2016 Chin. Phys. Lett. 33 063201

    [33]

    Hung C L, Zhang X B, Gemelke N, Chin C 2008 Phys. Rev. A 78 011604

    [34]

    Bouton Q, Chang R, Hoendervanger A L, Nogrette F, Aspect A, Westbrook C I, Clment D 2015 Phys. Rev. A 91 061402

    [35]

    Mimoun E, Sarlo L D, Jacob D, Dalibard J, Gerbier F 2010 Phys. Rev. A 81 023631

    [36]

    Clment J F, Brantut J P, Robert-de-Saint-Vincent M, Nyman R A, Aspect A, Bourdel T, Bouyer P 2009 Phys. Rev. A 79 061406

    [37]

    Wohlleben W, Chevy F, Madison K, Dalibard J 2001 Eur. Phys. J. D 15 237

    [38]

    Joffe M A, Ketterle W, Martin A, Pritchard D E 1993 J. Opt. Soc. Am. B 10 2257

    [39]

    Lison F, Schuh P, Haubrich D, Meschede D 1999 Phys. Rev. A 61 013405

    [40]

    Dieckmann K, Spreeuw R J C, Weidemller M, Walraven J T M 1998 Phys. Rev. A 58 3891

    [41]

    Schoser J, Batr A, Lw R, Schweikhard V, Grabowski A, Ovchinnikov Y B, Pfau T 2002 Phys. Rev. A 66 023410

    [42]

    Regal C A, Greiner M, Jin D S 2004 Phys. Rev. Lett. 92 083201

    [43]

    Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J, Ketterle W 2004 Phys. Rev. Lett. 92 120403

    [44]

    Salomon G, Fouch L, Lepoutre S, Aspect A, Bourdel T 2014 Phys. Rev. A 90 033405

    [45]

    Lin Y J, Perry A R, Compton R L, Spielman I B, Porto J V 2009 Phys. Rev. A 79 063631

    [46]

    Xiong D Z, Wang P J, Fu Z K, Zhang J 2010 Opt. Express 18 1649

    [47]

    Klempt C, Henninger T, Topic O, Will J, Falke St, Ertmer W, Arlt J 2008 Eur. Phys. J. D 48 121

    [48]

    Brink D M, Sukumar C V 2006 Phys. Rev. A 74 035401

    [49]

    Petrich W, Anderson M H, Ensher J R, Cornell E A 1995 Phys. Rev. Lett. 74 3352

    [50]

    Heo M S, Choi J, Shin Y 2011 Phys. Rev. A 83 013622

    [51]

    Naik D S, Raman C 2005 Phys. Rev. A 71 033617

    [52]

    Grimm R, Weidemller M, Ovchinnikov Y B 1999 arXiv: physics/9902072v1 [physics. atom-ph]

    [53]

    Xiong D Z, Wang P J, Fu Z K, Chai S J, Zhang J 2010 Chin. Opt. Lett. 8 627

    [54]

    Wang D W, Liu R B, Zhu S Y, Scully M O 2015 Phys. Rev. Lett. 114 043602

    [55]

    Łącki M, Baranov M A, Pichler H, Zoller P 2016 Phys. Rev. Lett. 117 233001

    [56]

    Li T, Duca L, Reitter M, Grusdt F, Demler E, Endres M, Schleier-Smith M, Bloch I, Schneider U 2016 Science 352 1094

    [57]

    Duca L, Li T, Reitter M, Bloch I, Schleier-Smith M, Schneider U 2015 Science 347 288

  • [1]

    Spielman I B 2009 Phys. Rev. A 79 063613

    [2]

    Lin Y J, Compton R L, Jimnez-Garca K, Phillips W D, Porto J V, Spielman I B 2011 Nat. Phys. 7 531

    [3]

    Kennedy C J, Burton W C, Chung W C, Ketterle W 2015 Nat. Phys. 11 859

    [4]

    Lin Y J, Compton R L, Jimnez-Garca K, Porto J V, Spielman I B 2009 Nature 462 628

    [5]

    Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V, Spielman I B 2009 Phys. Rev. Lett. 102 130401

    [6]

    Duan L M, Demler E, LKin M D 2003 Phys. Rev. Lett. 91 090402

    [7]

    Huang Z, Zeng W, Gu Y, Liu L, Zhou L, Zhang W P 2016 Acta Phys. Sin. 65 164201 (in Chinese) [黄珍, 曾文, 古艺, 刘利, 周鲁, 张卫平 2016 物理学报 65 164201]

    [8]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [9]

    Weber T, Herbig J, Mark M, Ngerl H C, Grimm R 2003 Science 299 232

    [10]

    Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [11]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [12]

    Bai J H, Lu X G, Miao X X, Pei L Y, Wang M, Gao Y L, Wang R Q, Wu L A, Fu P M, Zuo Z C 2015 Acta Phys. Sin. 64 034206 (in Chinese) [白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春 2015 物理学报 64 034206]

    [13]

    Zhao X B, Xu Z X, Zhang L J, Wu Y L, Li S J, Wang H 2010 Acta Sin. Quantum Opt. 16 196 (in Chinese) [赵兴波, 徐忠孝, 张利军, 武跃龙, 李淑静, 王海 2010 量子光学学报 16 196]

    [14]

    Zhang Z Y, Wu Y L, Xu Z X, Chen L R, Li S J, Wang H 2013 Acta Sin. Quantum Opt. 19 340 (in Chinese) [张志英, 武跃龙, 徐忠孝, 陈力荣, 李淑静, 王海 2013 量子光学学报 19 340]

    [15]

    Meng Z M, Huang L H, Peng P, Chen L C, Fan H, Wang P J, Zhang J 2015 Acta Phys. Sin. 64 243202 (in Chinese) [孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖 2015 物理学报 64 243202]

    [16]

    Esslinger T, Bloch I, Hnsch T W 1998 Phys. Rev. A 58 2664

    [17]

    Greiner M, Mandel O, Esslinger T, Hnsch T W, Bloch I 2002 Nature 415 39

    [18]

    Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, Flling S, Pollet L, Greiner M 2010 Science 329 547

    [19]

    Hofferberth S, Lesanovsky I, Fischer B, Schumm T, Schmiedmayer J 2007 Nature 449 324

    [20]

    Fan H, Wang P J, Zhang J 2015 Acta Sin. Quantum Opt. 21 351 (in Chinese) [樊浩, 王鹏军, 张靖 2015 量子光学学报 21 351]

    [21]

    Chai S J, Wang P J, Fu Z K, Huang L H, Zhang J 2012 Acta Sin. Quantum Opt. 18 171 (in Chinese) [柴世杰, 王鹏军, 付正坤, 黄良辉, 张靖 2012 量子光学学报 18 171]

    [22]

    Wang P J, Chen H X, Xiong D Z, Yu X D, Gao F, Zhang J 2008 Acta Phys. Sin. 57 4840 (in Chinese) [王鹏军, 陈海霞, 熊德智, 于旭东, 高峰, 张靖 2008 物理学报 57 4840]

    [23]

    Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151

    [24]

    Bauer D M, Lettner M, Vo C, Rempe G, Drr S 2009 Nat. Phys. 5 339

    [25]

    Olf R, Fang F, Marti G E, Macrae A, Stamper-Kurn D M 2015 Nat. Phys. 11 720

    [26]

    Bakr W S, Gillen J I, Peng A, Flling S, Greiner M 2009 Nature 462 74

    [27]

    Xie D Z, Bu W H, Yan B 2016 Chin. Phys. B 25 053701

    [28]

    Deng S J, Shi Z Y, Diao P P, Yu Q L, Zhai H, Qi R, Wu H B 2016 Science 353 371

    [29]

    Chen Y A, Huber S D, Trotzky S, Bloch I, Altman E 2011 Nat. Phys. 7 61

    [30]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nat. Phys. 12 540

    [31]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nat. Phys. 10 314

    [32]

    Li L, Qu Q Z, Wang B, Li T, Zhao J B, Ji J W, Ren W, Zhao X, Ye M F, Yao Y Y, L D S, Liu L 2016 Chin. Phys. Lett. 33 063201

    [33]

    Hung C L, Zhang X B, Gemelke N, Chin C 2008 Phys. Rev. A 78 011604

    [34]

    Bouton Q, Chang R, Hoendervanger A L, Nogrette F, Aspect A, Westbrook C I, Clment D 2015 Phys. Rev. A 91 061402

    [35]

    Mimoun E, Sarlo L D, Jacob D, Dalibard J, Gerbier F 2010 Phys. Rev. A 81 023631

    [36]

    Clment J F, Brantut J P, Robert-de-Saint-Vincent M, Nyman R A, Aspect A, Bourdel T, Bouyer P 2009 Phys. Rev. A 79 061406

    [37]

    Wohlleben W, Chevy F, Madison K, Dalibard J 2001 Eur. Phys. J. D 15 237

    [38]

    Joffe M A, Ketterle W, Martin A, Pritchard D E 1993 J. Opt. Soc. Am. B 10 2257

    [39]

    Lison F, Schuh P, Haubrich D, Meschede D 1999 Phys. Rev. A 61 013405

    [40]

    Dieckmann K, Spreeuw R J C, Weidemller M, Walraven J T M 1998 Phys. Rev. A 58 3891

    [41]

    Schoser J, Batr A, Lw R, Schweikhard V, Grabowski A, Ovchinnikov Y B, Pfau T 2002 Phys. Rev. A 66 023410

    [42]

    Regal C A, Greiner M, Jin D S 2004 Phys. Rev. Lett. 92 083201

    [43]

    Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J, Ketterle W 2004 Phys. Rev. Lett. 92 120403

    [44]

    Salomon G, Fouch L, Lepoutre S, Aspect A, Bourdel T 2014 Phys. Rev. A 90 033405

    [45]

    Lin Y J, Perry A R, Compton R L, Spielman I B, Porto J V 2009 Phys. Rev. A 79 063631

    [46]

    Xiong D Z, Wang P J, Fu Z K, Zhang J 2010 Opt. Express 18 1649

    [47]

    Klempt C, Henninger T, Topic O, Will J, Falke St, Ertmer W, Arlt J 2008 Eur. Phys. J. D 48 121

    [48]

    Brink D M, Sukumar C V 2006 Phys. Rev. A 74 035401

    [49]

    Petrich W, Anderson M H, Ensher J R, Cornell E A 1995 Phys. Rev. Lett. 74 3352

    [50]

    Heo M S, Choi J, Shin Y 2011 Phys. Rev. A 83 013622

    [51]

    Naik D S, Raman C 2005 Phys. Rev. A 71 033617

    [52]

    Grimm R, Weidemller M, Ovchinnikov Y B 1999 arXiv: physics/9902072v1 [physics. atom-ph]

    [53]

    Xiong D Z, Wang P J, Fu Z K, Chai S J, Zhang J 2010 Chin. Opt. Lett. 8 627

    [54]

    Wang D W, Liu R B, Zhu S Y, Scully M O 2015 Phys. Rev. Lett. 114 043602

    [55]

    Łącki M, Baranov M A, Pichler H, Zoller P 2016 Phys. Rev. Lett. 117 233001

    [56]

    Li T, Duca L, Reitter M, Grusdt F, Demler E, Endres M, Schleier-Smith M, Bloch I, Schneider U 2016 Science 352 1094

    [57]

    Duca L, Li T, Reitter M, Bloch I, Schleier-Smith M, Schneider U 2015 Science 347 288

  • [1] 余泽鑫, 刘琪鑫, 孙剑芳, 徐震. 基于二维磁光阱的增强型199Hg冷原子团制备. 物理学报, 2024, 73(1): 013701. doi: 10.7498/aps.73.20231243
    [2] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控. 物理学报, 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [3] 贺丽, 张天琪, 李可芯, 余增强. 双组分玻色-爱因斯坦凝聚体的混溶性. 物理学报, 2023, 72(11): 110302. doi: 10.7498/aps.72.20230001
    [4] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解. 物理学报, 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [5] 王青青, 周玉珊, 王静, 樊小贝, 邵凯花, 赵月星, 宋燕, 石玉仁. 三体作用下准一维玻色-爱因斯坦凝聚体中表面带隙孤子及其稳定性. 物理学报, 2023, 72(10): 100308. doi: 10.7498/aps.72.20222195
    [6] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [7] 焦婧, 罗焕波, 李禄. 由正负磁单极对相互作用诱导的孤立狄拉克弦. 物理学报, 2021, 70(7): 071401. doi: 10.7498/aps.70.20201744
    [8] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [9] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [10] 李子亮, 师振莲, 王鹏军. 采用永磁铁的钠原子二维磁光阱的设计和研究. 物理学报, 2020, 69(12): 126701. doi: 10.7498/aps.69.20200266
    [11] 刘晓威, 张可烨. 有效质量法调控原子玻色-爱因斯坦凝聚体的双阱动力学. 物理学报, 2017, 66(16): 160301. doi: 10.7498/aps.66.160301
    [12] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 物理学报, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [13] 张波, 王登龙, 佘彦超, 张蔚曦. 方势阱中凝聚体的孤子动力学行为. 物理学报, 2013, 62(11): 110501. doi: 10.7498/aps.62.110501
    [14] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究. 物理学报, 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [15] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性. 物理学报, 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [16] 张蔚曦, 佘彦超, 王登龙. 计及两体和三体作用下的二维凝聚体中的孤子特性. 物理学报, 2011, 60(7): 070514. doi: 10.7498/aps.60.070514
    [17] 奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文. 双色光晶格势阱中玻色-爱因斯坦凝聚体的Landau-Zener隧穿行为. 物理学报, 2010, 59(6): 3720-3726. doi: 10.7498/aps.59.3720
    [18] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性. 物理学报, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [19] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波. 物理学报, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [20] 薛卫东, 朱正和, 冉鸣, 王红艳, 邹乐西, 孙颖. U+CO体系的分子反应动力学研究. 物理学报, 2002, 51(11): 2503-2508. doi: 10.7498/aps.51.2503
计量
  • 文章访问数:  6164
  • PDF下载量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-26
  • 修回日期:  2017-02-12
  • 刊出日期:  2017-04-05

/

返回文章
返回