搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铀基非晶合金的发展现状

柯海波 蒲朕 张培 张鹏国 徐宏扬 黄火根 刘天伟 王英敏

引用本文:
Citation:

铀基非晶合金的发展现状

柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏

Research progress in U-based amorphous alloys

Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min
PDF
导出引用
  • 铀基非晶合金是非晶家族中的特殊成员,受限于铀元素的高活性与放射性特点,目前这类非晶材料的研究极不充分.本文结合非晶合金的最新发展动态简要介绍了铀基非晶发展历史,较系统地总结了本团队的最新铀基非晶研究工作:首先较详细地介绍了新型铀基非晶的制备技术、成分体系、形成规律与晶化行为,澄清了其形成机制与热稳定性;结合高分辨电镜分析展示了其微观结构特点;采用纳米压痕技术揭示了这类非晶的微纳力学性能;利用电化学测试方法评估了其耐腐蚀性能.这些结果丰富了非晶材料的内涵,有助于深化对非晶物理基础科学问题的理解,并推动新型铀合金材料的发展,为这种材料的潜在工程应用奠定了基础.
    Uranium-based amorphous alloys are a unique family of amorphous materials, which have so far been less studied due to the high chemical activity and radioactivity of uranium metal. In this paper, we review the compositions, preparations and thermal stability characteristics of U-based amorphous alloys obtained in the early experimental studies, and summarizes our recent results of the preparations and material properties of stable U-based amorphous alloys. The latest progress in our study of U-based amorphous alloys is presented in the three aspects. Firstly, the preparation methods, alloy systems and compositions, formation and crystallization behaviors of the new U-based amorphous alloys, along with the preliminary mechanisms for their formation and structure stabilization are reviewed. A number of new uranium-based amorphous alloy systems have been established based on eutectic law and structural packing model. These alloys show high ability to form glass, and the reduction of glass transition temperatures of some alloys to those of conventional amorphous alloys. The formation rules of binary (U-Fe/U-Co/U-Cr), ternary (U-Co-Al/U-Fe-Sn) and multicomponent alloy system have been investigated. It was found that the ability to form glass is strongly related to some physical parameters such as the local cluster structure, the electron concentration, the enthalpy of mixing, the electronegativity of the alloy component as well as the atomic size. The fragilities of U-based amorphous alloys indicate that they belong to a class of strong glass forming system, which means that the critical dimensions of such amorphous alloys can be further enhanced, and bulk amorphous samples are expected to be prepared. The crystallization activation of this kind of amorphous alloy is higher, and the crystallization process is dominated by nucleation. Then, the microstructures especially the first high-resolution electron microscopic results of the unique amorphous materials are reviewed. Finally, the micro-mechanical and anti-corrosion properties are reported in great detail. It is found that U-based amorphous materials show excellent mechanical properties and corrosion resistance, and the strength and hardness are much higher than those of conventional crystalline uranium alloys, and the corrosion resistance is also superior to the latter, which may be caused by its disorderly amorphous structural characteristics. Amorphous alloys have been the subject of intense fundamental and application research in recent years. Stable U-based amorphous alloys appear to cover all physical phenomena displayed by amorphous alloys. The discovery of outstanding properties in these new alloys therefore would stimulate both the fundamental studies including structure, electronic, glass transition, crystallization, etc., and the application-orientated studies of the thermal stability, mechanical and corrosion properties.
      通信作者: 黄火根, hhgeng2002@sina.com;apwangym@dlut.edu.cn ; 王英敏, hhgeng2002@sina.com;apwangym@dlut.edu.cn
    • 基金项目: 国防基础科学研究项目(批准号:B1520133007)、国家自然科学基金青年科学基金(批准号:51501169)、基础科研科学挑战计划(批准号:JCKY2016212A504)和中国工程物理研究院规划项目(批准号:TCGH071601)资助的课题.
      Corresponding author: Huang Huo-Gen, hhgeng2002@sina.com;apwangym@dlut.edu.cn ; Wang Ying-Min, hhgeng2002@sina.com;apwangym@dlut.edu.cn
    • Funds: Project supported by the National Defense Basic Scientific Research Program of China (Grant No. B1520133007), the Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 51501169), the Science Challenge Program, China (Grant No. JCKY2016212A504), and the Planning Program of China Academy of Engineering Physics (Grant No. TCGH071601).
    [1]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [2]

    Inoue A 2000 Acta Mater. 48 279

    [3]

    Johnson W L 1999 MAS Bull. 24 42

    [4]

    Kui H W, Greer A L, Turnbull D 1982 Appl. Phys. Lett. 41 716

    [5]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [6]

    Greer A L 1995 Science 267 1947

    [7]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [8]

    C G B, O E R 1978 Proccedings of the 3rd International Conference on Rapid Quenching. Sussex Brighton England p406

    [9]

    Eilliott R O, Koss D A, Giessen B C 1980 Script. Acta Metall. 10 1061

    [10]

    Bethune B 1969 J. Nucl. Mater. 31 197

    [11]

    Giessen B C, Elliott R O 1978 Proceedings of the 3rd International Conference on Rapid Quenching Sussex, Brighton, England, 1978 p9

    [12]

    Elliot R O, Smith J L, Finocchiaro R S 1981 Mater. Sci. Eng. 49 65

    [13]

    Elliot R O, Giessen B C 1982 Acta Metall. 30 785

    [14]

    Drehman A J, Poon S J 1985 J. Non. Crys. Solids 76 321

    [15]

    Wong K M, Poon S J 1986 Phys. Rev. B 34 7371

    [16]

    McElfresh M W, Plaskett T S, Gambino R J 1990 Appl. Phys. Lett. 57 730

    [17]

    Plaskett T S, McGuire T R, Fumagalli P 1991 J. Appl. Phys. 70 5855

    [18]

    Fumagalli P, Plaskett T S, McGuire T R 1992 Phys. Rev. B 46 6187

    [19]

    Homma Y, Shiokawa Y, Suzuki K 1995 Physica B 206-207 467

    [20]

    Homma Y, Takakuwa Y, Shiokawa Y 1998 J. Alloys Compd. 271-273 459

    [21]

    Ke H B, Xu H Y, Huang H G, Liu T W, Zhang P, Wu M, Zhang P G, Wang Y M 2017 J. Alloys Compd. 691 436

    [22]

    Huang H G, Ke H B, Zhang P, Wang Y M, Wu M, Liu T W 2016 J. Alloys Compd. 688 599

    [23]

    Huang H G, Ke H B, Wang Y M, Pu Z, Zhang P, Zhang P G, Liu T W 2016 J. Alloys Compd. 684 75

    [24]

    Huang H G, Ke H B, Zhang P G, Liu T W 2017 Rare Metal. Mat. Eng. (in press) (in Chinese) [黄火根, 柯海波, 张鹏国, 刘天伟 2017 稀有金属材料与工程 录用]

    [25]

    Huang H G, Wang Y M, Liu T W, Chen L, Zhang P G 2016 China Patent ZL201408142848 (in Chinese) [黄火根, 王英敏, 刘天伟, 陈亮, 张鹏国 2016 中国专利 ZL201408142848]

    [26]

    Huang H G, Liu T W, Wu X C, Wang Y M 2015 China Patent ZL2013103745149 (in Chinese) [黄火根, 刘天伟, 巫祥超, 王英敏 2015 中国专利 ZL2013103745149]

    [27]

    Huang H G, Wang Y M, Chen L, Pu Z, Zhang P G, Liu T W 2015 Acta Metal. Sin. 51 623 (in Chinese) [黄火根, 王英敏, 陈亮, 蒲朕, 张鹏国, 刘天伟 2015 金属学报 51 623]

    [28]

    Huang H G, Xu H Y, Zhang P G, Wang Y M, Ke H B, Zhang P, Liu T W 2016 Acta Metal. Sin. 53 233 (in Chinese) [黄火根, 徐宏扬, 张鹏国, 王英敏, 柯海波, 张培, 刘天伟 2016 金属学报 53 233]

    [29]

    Kim J J, Choi Y, Suresh S, Argon A S 2002 Science 295 654

    [30]

    Johnson W L, Kaltenboeck G, Demetriou M D, Schramm J P, Liu X, Samwer K, Kim C P, Hofmann D C 2011 Science 332 828

    [31]

    Hu L, Ye F 2013 J. Alloys Compd. 557 160

    [32]

    Joshi S S, Gkriniari A V, Katakam S, Dahotre N B 2015 J. Phys. D: Appl. Phys. 48 495501

    [33]

    Vázquez J, Wagner C, Villares P, Jiménez-Garay R 1996 Acta Mater. 44 4807

    [34]

    Kissinger H E 1957 Anal. Chem. 29 1702

    [35]

    Zhao L, Jia H L, Xie S H, Zeng X R, Zhang T, Ma C L 2010 J. Alloys Compd. 504 S219

    [36]

    Qiao J C, Pelletier J M 2011 J. Non-Cryst. Solids 357 2590

    [37]

    Ozawa T 1965 Bull. Chem. Soc. Jpn. 38 1881

    [38]

    Bohmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201

    [39]

    Dyre J C 2006 Rev. Mod. Phys. 78 953

    [40]

    Wang T, Yang Y Q, Li J B, Rao G H 2011 J. Alloys Compd. 509 4569

    [41]

    Dalla Fontana G, Battezzati L 2013 Acta Mater. 61 2260

    [42]

    Malek J 1995 Therm. Acta 267 61

    [43]

    Lu W, Yan B, Huang W H 2005 J. Non-Cryst. Solids 351 3320

    [44]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366

    [45]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [46]

    Lopes D A, Guisard Restivo T A, Padilha A F 2013 J. Nucl. Mater. 440 304

    [47]

    Ma D, Stoica A D, Wang X L, Lu Z P, Clausen B, Brown D W 2012 Phys. Rev. Lett. 108 085501

    [48]

    Wang W H 2012 Nat. Mater. 11 275

    [49]

    Wang Y M, Li Y F, Qiang J B, Geng Y X, Wang Q, Dong C, Mi S B 2014 J. Mater. Sci. 49 6007

    [50]

    Ke H B, Liu C T, Yang Y Q 2015 Sci. China: Tech. Sci. 58 47

    [51]

    Matthews D B 1975 Aust. J. Chem. 28 243

    [52]

    El-Moneim A A, Gebert A, Uhlemann M, Gutfleisch O, Shultz L 2002 Corr. Sci. 44 1857

    [53]

    Chen T J 2012 in: Chen W Z, Dai P, Chen Y L, Wang Q T, Jiang Z (Eds.) Advanced Mechanical Design, Pts 1-3, vol. 479-481 (Stafa-Zurich: Trans Tech Publications Ltd.) pp1795

    [54]

    Pegg I L 2015 Phys. Today 68 33

  • [1]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [2]

    Inoue A 2000 Acta Mater. 48 279

    [3]

    Johnson W L 1999 MAS Bull. 24 42

    [4]

    Kui H W, Greer A L, Turnbull D 1982 Appl. Phys. Lett. 41 716

    [5]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [6]

    Greer A L 1995 Science 267 1947

    [7]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [8]

    C G B, O E R 1978 Proccedings of the 3rd International Conference on Rapid Quenching. Sussex Brighton England p406

    [9]

    Eilliott R O, Koss D A, Giessen B C 1980 Script. Acta Metall. 10 1061

    [10]

    Bethune B 1969 J. Nucl. Mater. 31 197

    [11]

    Giessen B C, Elliott R O 1978 Proceedings of the 3rd International Conference on Rapid Quenching Sussex, Brighton, England, 1978 p9

    [12]

    Elliot R O, Smith J L, Finocchiaro R S 1981 Mater. Sci. Eng. 49 65

    [13]

    Elliot R O, Giessen B C 1982 Acta Metall. 30 785

    [14]

    Drehman A J, Poon S J 1985 J. Non. Crys. Solids 76 321

    [15]

    Wong K M, Poon S J 1986 Phys. Rev. B 34 7371

    [16]

    McElfresh M W, Plaskett T S, Gambino R J 1990 Appl. Phys. Lett. 57 730

    [17]

    Plaskett T S, McGuire T R, Fumagalli P 1991 J. Appl. Phys. 70 5855

    [18]

    Fumagalli P, Plaskett T S, McGuire T R 1992 Phys. Rev. B 46 6187

    [19]

    Homma Y, Shiokawa Y, Suzuki K 1995 Physica B 206-207 467

    [20]

    Homma Y, Takakuwa Y, Shiokawa Y 1998 J. Alloys Compd. 271-273 459

    [21]

    Ke H B, Xu H Y, Huang H G, Liu T W, Zhang P, Wu M, Zhang P G, Wang Y M 2017 J. Alloys Compd. 691 436

    [22]

    Huang H G, Ke H B, Zhang P, Wang Y M, Wu M, Liu T W 2016 J. Alloys Compd. 688 599

    [23]

    Huang H G, Ke H B, Wang Y M, Pu Z, Zhang P, Zhang P G, Liu T W 2016 J. Alloys Compd. 684 75

    [24]

    Huang H G, Ke H B, Zhang P G, Liu T W 2017 Rare Metal. Mat. Eng. (in press) (in Chinese) [黄火根, 柯海波, 张鹏国, 刘天伟 2017 稀有金属材料与工程 录用]

    [25]

    Huang H G, Wang Y M, Liu T W, Chen L, Zhang P G 2016 China Patent ZL201408142848 (in Chinese) [黄火根, 王英敏, 刘天伟, 陈亮, 张鹏国 2016 中国专利 ZL201408142848]

    [26]

    Huang H G, Liu T W, Wu X C, Wang Y M 2015 China Patent ZL2013103745149 (in Chinese) [黄火根, 刘天伟, 巫祥超, 王英敏 2015 中国专利 ZL2013103745149]

    [27]

    Huang H G, Wang Y M, Chen L, Pu Z, Zhang P G, Liu T W 2015 Acta Metal. Sin. 51 623 (in Chinese) [黄火根, 王英敏, 陈亮, 蒲朕, 张鹏国, 刘天伟 2015 金属学报 51 623]

    [28]

    Huang H G, Xu H Y, Zhang P G, Wang Y M, Ke H B, Zhang P, Liu T W 2016 Acta Metal. Sin. 53 233 (in Chinese) [黄火根, 徐宏扬, 张鹏国, 王英敏, 柯海波, 张培, 刘天伟 2016 金属学报 53 233]

    [29]

    Kim J J, Choi Y, Suresh S, Argon A S 2002 Science 295 654

    [30]

    Johnson W L, Kaltenboeck G, Demetriou M D, Schramm J P, Liu X, Samwer K, Kim C P, Hofmann D C 2011 Science 332 828

    [31]

    Hu L, Ye F 2013 J. Alloys Compd. 557 160

    [32]

    Joshi S S, Gkriniari A V, Katakam S, Dahotre N B 2015 J. Phys. D: Appl. Phys. 48 495501

    [33]

    Vázquez J, Wagner C, Villares P, Jiménez-Garay R 1996 Acta Mater. 44 4807

    [34]

    Kissinger H E 1957 Anal. Chem. 29 1702

    [35]

    Zhao L, Jia H L, Xie S H, Zeng X R, Zhang T, Ma C L 2010 J. Alloys Compd. 504 S219

    [36]

    Qiao J C, Pelletier J M 2011 J. Non-Cryst. Solids 357 2590

    [37]

    Ozawa T 1965 Bull. Chem. Soc. Jpn. 38 1881

    [38]

    Bohmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201

    [39]

    Dyre J C 2006 Rev. Mod. Phys. 78 953

    [40]

    Wang T, Yang Y Q, Li J B, Rao G H 2011 J. Alloys Compd. 509 4569

    [41]

    Dalla Fontana G, Battezzati L 2013 Acta Mater. 61 2260

    [42]

    Malek J 1995 Therm. Acta 267 61

    [43]

    Lu W, Yan B, Huang W H 2005 J. Non-Cryst. Solids 351 3320

    [44]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366

    [45]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [46]

    Lopes D A, Guisard Restivo T A, Padilha A F 2013 J. Nucl. Mater. 440 304

    [47]

    Ma D, Stoica A D, Wang X L, Lu Z P, Clausen B, Brown D W 2012 Phys. Rev. Lett. 108 085501

    [48]

    Wang W H 2012 Nat. Mater. 11 275

    [49]

    Wang Y M, Li Y F, Qiang J B, Geng Y X, Wang Q, Dong C, Mi S B 2014 J. Mater. Sci. 49 6007

    [50]

    Ke H B, Liu C T, Yang Y Q 2015 Sci. China: Tech. Sci. 58 47

    [51]

    Matthews D B 1975 Aust. J. Chem. 28 243

    [52]

    El-Moneim A A, Gebert A, Uhlemann M, Gutfleisch O, Shultz L 2002 Corr. Sci. 44 1857

    [53]

    Chen T J 2012 in: Chen W Z, Dai P, Chen Y L, Wang Q T, Jiang Z (Eds.) Advanced Mechanical Design, Pts 1-3, vol. 479-481 (Stafa-Zurich: Trans Tech Publications Ltd.) pp1795

    [54]

    Pegg I L 2015 Phys. Today 68 33

  • [1] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [2] 马爽, 郝玮晔, 王旭东, 张伟, 姚曼. 类金属元素影响Co-Y-B合金非晶形成能力和磁性能的机制分析. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220873
    [3] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [4] 姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽. 铁基软磁非晶/纳米晶合金研究进展及应用前景. 物理学报, 2018, 67(1): 016101. doi: 10.7498/aps.67.20171473
    [5] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀. 物理学报, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [6] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [7] 平志海, 钟鸣, 龙志林. 基于逾渗理论的非晶合金屈服行为研究. 物理学报, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [8] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂. 物理学报, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [9] 柳延辉. 非晶合金的高通量制备与表征. 物理学报, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [10] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体. 物理学报, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [11] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [12] 王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [13] 吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平. 块体非晶合金的韧塑化. 物理学报, 2017, 66(17): 176111. doi: 10.7498/aps.66.176111
    [14] 许福, 李科锋, 邓旭辉, 张平, 龙志林. 基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究. 物理学报, 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [15] 张雅楠, 王有骏, 孔令体, 李金富. Y对Fe-Si-B 合金非晶形成能力及软磁性能的影响. 物理学报, 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [16] 张 辉, 张国英, 杨 爽, 吴 迪, 戚克振. Zr基大块非晶中添加元素对非晶形成能力及耐蚀性的影响. 物理学报, 2008, 57(12): 7822-7826. doi: 10.7498/aps.57.7822
    [17] 王海龙, 王秀喜, 王 宇, 梁海弋. 非晶Ti3Al合金的变形晶化机理的原子模拟. 物理学报, 2007, 56(3): 1489-1493. doi: 10.7498/aps.56.1489
    [18] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [19] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究. 物理学报, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [20] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究. 物理学报, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
计量
  • 文章访问数:  3890
  • PDF下载量:  351
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-31
  • 修回日期:  2017-06-26
  • 刊出日期:  2017-09-05

铀基非晶合金的发展现状

    基金项目: 国防基础科学研究项目(批准号:B1520133007)、国家自然科学基金青年科学基金(批准号:51501169)、基础科研科学挑战计划(批准号:JCKY2016212A504)和中国工程物理研究院规划项目(批准号:TCGH071601)资助的课题.

摘要: 铀基非晶合金是非晶家族中的特殊成员,受限于铀元素的高活性与放射性特点,目前这类非晶材料的研究极不充分.本文结合非晶合金的最新发展动态简要介绍了铀基非晶发展历史,较系统地总结了本团队的最新铀基非晶研究工作:首先较详细地介绍了新型铀基非晶的制备技术、成分体系、形成规律与晶化行为,澄清了其形成机制与热稳定性;结合高分辨电镜分析展示了其微观结构特点;采用纳米压痕技术揭示了这类非晶的微纳力学性能;利用电化学测试方法评估了其耐腐蚀性能.这些结果丰富了非晶材料的内涵,有助于深化对非晶物理基础科学问题的理解,并推动新型铀合金材料的发展,为这种材料的潜在工程应用奠定了基础.

English Abstract

参考文献 (54)

目录

    /

    返回文章
    返回