搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类石墨烯锗烯研究进展

秦志辉

引用本文:
Citation:

类石墨烯锗烯研究进展

秦志辉

Recent progress of graphene-like germanene

Qin Zhi-Hui
PDF
导出引用
  • 近年来,伴随石墨烯研究的深入开展,考虑到兼容半导体工业,构筑类石墨烯锗烯并探究其奇特电学性质已成为凝聚态物理领域的研究前沿.本文首先简要介绍了锗烯这一全新二维体系的理论研究进展,包括锗烯的几何结构、电子结构及其调控以及它们之间的关系.理论研究表明,因最近邻原子间距大,锗烯比硅烯更难构筑,实验上构筑锗烯颇具挑战性.针对这一问题,介绍了实验上制备锗烯的一些进展,重点介绍了金属表面外延制备锗烯,并对本征锗烯的制备及其在未来纳电子学器件的潜在应用做出了展望.
    With tremendous progress of graphene and with the consideration of the compatibility with semiconductor industry, the construction of analogous two-dimensional crystalline systems-new two-dimensional honeycomb and layered materials composed of elements other than carbon, the group IV (Si, Ge) analogs of graphene and the investigation of their fascinated electronic properties have become the frontier topics of condensed matter physics. Theoretical calculation predicts that unlike the planar structure of graphene, the germanene has stable, two-dimensional, low-buckled, honeycomb structure similar to that of silicene, but has much higher spin-orbit band gap than silicene, which is certainly of crucial importance in future electronics. The influences of atomic structures and the buckling of the low-buckled geometry on local electronic structure of the fabricated germanene are also reviewed from the atomic point of view. As theoretical studies on germanene are rapidly increasing, now the major challenge in this field is the preparation of high-quality germanene. Compared with silicene, the germanene has larger Ge-Ge interatomic distance which can weaken the orbital overlaps, resulting in the big difficulty in constructing germanene. In this work we review the recent progress of experimental epitaxial growth of germanene on surfaces, with emphasis on metal surfaces. The growth of quasi-freestanding germanene and its potential applications in nanoelectronics in the future are also discussed.
      通信作者: 秦志辉, zhqin@hnu.edu.cn,zhqin@wipm.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CBA01600)和国家自然科学基金(批准号:11574350)资助的课题.
      Corresponding author: Qin Zhi-Hui, zhqin@hnu.edu.cn,zhqin@wipm.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01600) and the National Natural Science Foundation of China (Grant No. 11574350).
    [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Dai B, Fu L, Zou Z, Wang M, Xu H, Wang S, Liu Z F 2011 Nat. Commun. 2 522

    [4]

    Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J 2009 Adv. Mater. 21 2777

    [5]

    Mu R, Fu Q, Jin L, Yu L, Fang G, Tan D, Bao X H 2012 Angew. Chem. Int. Edit. 51 4856

    [6]

    Wu Z S, Feng X L, Cheng H M 2014 Natl. Sci. Rev. 1 277

    [7]

    Ju L, Velasco Jr J, Huang E, Kahn S, Nosiglia C, Tsai H, Yang W, Taniguchi T, Watanabe K, Zhang Y, Zhang G, Crommie M, Zettl A, Wang F 2014 Nat. Nanotechnol. 9 348

    [8]

    Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401(R)

    [9]

    Takeda K, Shiraish K 1994 Phys. Rev. B 50 14916

    [10]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766

    [11]

    Guzmn-Verri G G, Lew Yan Voon L C 2007 Phys. Rev. B 76 075131

    [12]

    Cahangirov S, Topsakal M, Aktrk E, Şhin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [13]

    Lebgue S, Eriksson O 2009 Phys. Rev. B 79 115409

    [14]

    Houssa M, Pourtois G, Afanas'ev V V, Stesmans A 2010 Appl. Phys. Lett. 96 082111

    [15]

    Houssa M, Pourtois G, Afanas'ev V V, Stesmans A 2010 Appl. Phys. Lett. 97 112106

    [16]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802

    [17]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430

    [18]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227

    [19]

    Roome N J, David Carey J 2014 ACS Appl. Mater. Interfaces 6 7743

    [20]

    Nijamudheen A, Bhattacharjee R, Choudhury S, Datta A 2015 J. Phys. Chem. C 119 3802

    [21]

    Trivedi S, Srivastava A, Kurchania R 2014 J. Comput. Theor. Nanosci. 11 1

    [22]

    Ye M, Quhe R, Zheng J, Ni Z, Wang Y, Yuan Y, Tse G, Shi J, Gao Z, L J 2014 Physica E 59 60

    [23]

    Zhuang J, Gao N, Li Z, Xu X, Wang J, Zhao J, Dou S X, Du Y 2017 ACS Nano 11 3553

    [24]

    Li S, Zhang C, Ji W, Li F, Wang P, Hu S, Yan S, Liu Y 2014 Phys. Chem. Chem. Phys. 16 15968

    [25]

    Si C, Liu J, Xu Y, Wu J, Gu B L, Duan W 2014 Phys. Rev. B 89 115429

    [26]

    Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J 2012 Nano Lett. 12 113

    [27]

    Xia W, Hu W, Li Z, Yang J L 2014 Phys. Chem. Chem. Phys. 16 22495

    [28]

    Kaloni T P 2014 J. Phys. Chem. C 118 25200

    [29]

    Kaneko S, Tsuchiya H, Kamakura Y, Mori N, Matsuto O 2014 Appl. Phys. Express 7 035102

    [30]

    Cahangirov S, Topsakal M, Ciraci S 2010 Phys. Rev. B 81 195120

    [31]

    Pang Q, Zhang Y, Zhang J M, Ji V, Xu K W 2011 Nanoscale 3 4330

    [32]

    Kaloni T P, Schwingenschlgla U 2013 J. Appl. Phys. 114 184307

    [33]

    Ma Y, Dai Y, Niu C, Huang B 2012 J. Mater. Chem. 22 12587

    [34]

    Wu S C, Shan G, Yan B 2014 Phys. Rev. Lett. 113 256401

    [35]

    Zlyomi V, Wallbank J R, Fal'ko V I 2014 2D Mater. 1 011005

    [36]

    Yu W, Yan J, Gao S 2015 Nanoscale Res. Lett. 10 351

    [37]

    Jiang S, Butler S, Bianco E, Restrepo O D, Windl W, Goldberger J E 2014 Nat. Commun. 5 3389

    [38]

    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507

    [39]

    Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Carmen Asensio M, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501

    [40]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501

    [41]

    Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano Lett. 13 685

    [42]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414

    [43]

    Li L, Zhao M W 2013 Phys. Chem. Chem. Phys. 15 16853

    [44]

    Li L, Lu S, Pan J, Qin Z, Wang Y, Wang Y, Cao G, Du S, Gao H J 2014 Adv. Mater. 26 4820

    [45]

    Dvila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002

    [46]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510

    [47]

    Fukaya Y, Matsuda I, Feng B, Mochizuki I, Hyodo T, Shamoto S 2016 2D Mater. 3 035019

    [48]

    Zhang L, Bampoulis P, van Houselt A, Zandvliet H J W 2015 Appl. Phys. Lett. 107 111605

    [49]

    Bampoulis P, Zhang L, Safaei A, van Gastel R, Poelsema B, Zandvliet H J W 2014 J. Phys. Condens. Matter 26 442001

    [50]

    Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, Takagi N 2013 Phys. Rev. Lett. 110 076801

    [51]

    Guo Z, Furuya S, Iwata J, Oshiyama A 2013 Phys. Rev. B 87 235435

    [52]

    Wang Y, Li J, Xiong J, Pan Y, Ye M, Guo Y, Zhang H, Quhe R, Lu J 2016 Phys. Chem. Chem. Phys. 18 19451

    [53]

    Mahatha S K, Moras P, Bellini V, Sheverdyaeva P M, Struzzi C, Petaccia L, Carbone C 2014 Phys. Rev. B 89 201416

    [54]

    Chen M X, Zhong Z, Weinert M 2016 Phys. Rev. B 94 075409

    [55]

    Qin Z H, Pan J B, Lu S Z, Shao Y, Wang Y L, Du S X, Gao H J, Cao G Y 2017 Adv. Mater. 29 1606046

    [56]

    Dvila M E, Le Lay G 2016 Sci. Rep. 6 20714

    [57]

    Cai Y, Chuu C P, Wei C M, Chou M Y 2013 Phys. Rev. B 88 245408

    [58]

    Li X, Wu S, Zhou S, Zhu Z 2014 Nano. Res. Lett. 9 110

    [59]

    Persichetti L, Jardali F, Vach H, Sgarlata A, Berbezier I, De Crescenzi M, Balzarotti A 2016 J. Phys. Chem. Lett. 7 3246

    [60]

    Zhang L, Bampoulis P, Rudenko A N, Yao Q, van Houselt A, Poelsema B, Katsnelson M I, Zandvliet H J W 2016 Phys. Rev. Lett. 116 256804

    [61]

    Katsnelson M I, Fasolino A 2013 Acc. Chem. Res. 46 97

    [62]

    Zhang D, Lou W, Miao M, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402

  • [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [3]

    Dai B, Fu L, Zou Z, Wang M, Xu H, Wang S, Liu Z F 2011 Nat. Commun. 2 522

    [4]

    Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J 2009 Adv. Mater. 21 2777

    [5]

    Mu R, Fu Q, Jin L, Yu L, Fang G, Tan D, Bao X H 2012 Angew. Chem. Int. Edit. 51 4856

    [6]

    Wu Z S, Feng X L, Cheng H M 2014 Natl. Sci. Rev. 1 277

    [7]

    Ju L, Velasco Jr J, Huang E, Kahn S, Nosiglia C, Tsai H, Yang W, Taniguchi T, Watanabe K, Zhang Y, Zhang G, Crommie M, Zettl A, Wang F 2014 Nat. Nanotechnol. 9 348

    [8]

    Yao Y, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401(R)

    [9]

    Takeda K, Shiraish K 1994 Phys. Rev. B 50 14916

    [10]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766

    [11]

    Guzmn-Verri G G, Lew Yan Voon L C 2007 Phys. Rev. B 76 075131

    [12]

    Cahangirov S, Topsakal M, Aktrk E, Şhin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804

    [13]

    Lebgue S, Eriksson O 2009 Phys. Rev. B 79 115409

    [14]

    Houssa M, Pourtois G, Afanas'ev V V, Stesmans A 2010 Appl. Phys. Lett. 96 082111

    [15]

    Houssa M, Pourtois G, Afanas'ev V V, Stesmans A 2010 Appl. Phys. Lett. 97 112106

    [16]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802

    [17]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430

    [18]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227

    [19]

    Roome N J, David Carey J 2014 ACS Appl. Mater. Interfaces 6 7743

    [20]

    Nijamudheen A, Bhattacharjee R, Choudhury S, Datta A 2015 J. Phys. Chem. C 119 3802

    [21]

    Trivedi S, Srivastava A, Kurchania R 2014 J. Comput. Theor. Nanosci. 11 1

    [22]

    Ye M, Quhe R, Zheng J, Ni Z, Wang Y, Yuan Y, Tse G, Shi J, Gao Z, L J 2014 Physica E 59 60

    [23]

    Zhuang J, Gao N, Li Z, Xu X, Wang J, Zhao J, Dou S X, Du Y 2017 ACS Nano 11 3553

    [24]

    Li S, Zhang C, Ji W, Li F, Wang P, Hu S, Yan S, Liu Y 2014 Phys. Chem. Chem. Phys. 16 15968

    [25]

    Si C, Liu J, Xu Y, Wu J, Gu B L, Duan W 2014 Phys. Rev. B 89 115429

    [26]

    Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J 2012 Nano Lett. 12 113

    [27]

    Xia W, Hu W, Li Z, Yang J L 2014 Phys. Chem. Chem. Phys. 16 22495

    [28]

    Kaloni T P 2014 J. Phys. Chem. C 118 25200

    [29]

    Kaneko S, Tsuchiya H, Kamakura Y, Mori N, Matsuto O 2014 Appl. Phys. Express 7 035102

    [30]

    Cahangirov S, Topsakal M, Ciraci S 2010 Phys. Rev. B 81 195120

    [31]

    Pang Q, Zhang Y, Zhang J M, Ji V, Xu K W 2011 Nanoscale 3 4330

    [32]

    Kaloni T P, Schwingenschlgla U 2013 J. Appl. Phys. 114 184307

    [33]

    Ma Y, Dai Y, Niu C, Huang B 2012 J. Mater. Chem. 22 12587

    [34]

    Wu S C, Shan G, Yan B 2014 Phys. Rev. Lett. 113 256401

    [35]

    Zlyomi V, Wallbank J R, Fal'ko V I 2014 2D Mater. 1 011005

    [36]

    Yu W, Yan J, Gao S 2015 Nanoscale Res. Lett. 10 351

    [37]

    Jiang S, Butler S, Bianco E, Restrepo O D, Windl W, Goldberger J E 2014 Nat. Commun. 5 3389

    [38]

    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507

    [39]

    Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Carmen Asensio M, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501

    [40]

    Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501

    [41]

    Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H J 2013 Nano Lett. 13 685

    [42]

    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414

    [43]

    Li L, Zhao M W 2013 Phys. Chem. Chem. Phys. 15 16853

    [44]

    Li L, Lu S, Pan J, Qin Z, Wang Y, Wang Y, Cao G, Du S, Gao H J 2014 Adv. Mater. 26 4820

    [45]

    Dvila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002

    [46]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510

    [47]

    Fukaya Y, Matsuda I, Feng B, Mochizuki I, Hyodo T, Shamoto S 2016 2D Mater. 3 035019

    [48]

    Zhang L, Bampoulis P, van Houselt A, Zandvliet H J W 2015 Appl. Phys. Lett. 107 111605

    [49]

    Bampoulis P, Zhang L, Safaei A, van Gastel R, Poelsema B, Zandvliet H J W 2014 J. Phys. Condens. Matter 26 442001

    [50]

    Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, Takagi N 2013 Phys. Rev. Lett. 110 076801

    [51]

    Guo Z, Furuya S, Iwata J, Oshiyama A 2013 Phys. Rev. B 87 235435

    [52]

    Wang Y, Li J, Xiong J, Pan Y, Ye M, Guo Y, Zhang H, Quhe R, Lu J 2016 Phys. Chem. Chem. Phys. 18 19451

    [53]

    Mahatha S K, Moras P, Bellini V, Sheverdyaeva P M, Struzzi C, Petaccia L, Carbone C 2014 Phys. Rev. B 89 201416

    [54]

    Chen M X, Zhong Z, Weinert M 2016 Phys. Rev. B 94 075409

    [55]

    Qin Z H, Pan J B, Lu S Z, Shao Y, Wang Y L, Du S X, Gao H J, Cao G Y 2017 Adv. Mater. 29 1606046

    [56]

    Dvila M E, Le Lay G 2016 Sci. Rep. 6 20714

    [57]

    Cai Y, Chuu C P, Wei C M, Chou M Y 2013 Phys. Rev. B 88 245408

    [58]

    Li X, Wu S, Zhou S, Zhu Z 2014 Nano. Res. Lett. 9 110

    [59]

    Persichetti L, Jardali F, Vach H, Sgarlata A, Berbezier I, De Crescenzi M, Balzarotti A 2016 J. Phys. Chem. Lett. 7 3246

    [60]

    Zhang L, Bampoulis P, Rudenko A N, Yao Q, van Houselt A, Poelsema B, Katsnelson M I, Zandvliet H J W 2016 Phys. Rev. Lett. 116 256804

    [61]

    Katsnelson M I, Fasolino A 2013 Acc. Chem. Res. 46 97

    [62]

    Zhang D, Lou W, Miao M, Zhang S C, Chang K 2013 Phys. Rev. Lett. 111 156402

  • [1] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [2] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化. 物理学报, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [3] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [4] 肖美霞, 冷浩, 宋海洋, 王磊, 姚婷珍, 何成. 有机分子吸附和衬底调控锗烯的电子结构. 物理学报, 2021, 70(6): 063101. doi: 10.7498/aps.70.20201657
    [5] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [6] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应. 物理学报, 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [7] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究. 物理学报, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [8] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [9] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度. 物理学报, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [10] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [11] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算. 物理学报, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [12] 武红, 李峰. GeH/层间弱相互作用调控锗烯电子结构的机制. 物理学报, 2016, 65(9): 096801. doi: 10.7498/aps.65.096801
    [13] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [14] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [15] 张弦, 郭志新, 曹觉先, 肖思国, 丁建文. GaAs(111)表面硅烯、锗烯的几何及电子性质研究. 物理学报, 2015, 64(18): 186101. doi: 10.7498/aps.64.186101
    [16] 娄利飞, 潘青彪, 吴志华. 基于石墨烯用于微弱能量获取的柔性微结构研究. 物理学报, 2014, 63(15): 158501. doi: 10.7498/aps.63.158501
    [17] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [18] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究. 物理学报, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [19] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究. 物理学报, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [20] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
计量
  • 文章访问数:  7269
  • PDF下载量:  740
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-05
  • 修回日期:  2017-09-12
  • 刊出日期:  2017-11-05

类石墨烯锗烯研究进展

    基金项目: 国家重点基础研究发展计划(批准号:2013CBA01600)和国家自然科学基金(批准号:11574350)资助的课题.

摘要: 近年来,伴随石墨烯研究的深入开展,考虑到兼容半导体工业,构筑类石墨烯锗烯并探究其奇特电学性质已成为凝聚态物理领域的研究前沿.本文首先简要介绍了锗烯这一全新二维体系的理论研究进展,包括锗烯的几何结构、电子结构及其调控以及它们之间的关系.理论研究表明,因最近邻原子间距大,锗烯比硅烯更难构筑,实验上构筑锗烯颇具挑战性.针对这一问题,介绍了实验上制备锗烯的一些进展,重点介绍了金属表面外延制备锗烯,并对本征锗烯的制备及其在未来纳电子学器件的潜在应用做出了展望.

English Abstract

参考文献 (62)

目录

    /

    返回文章
    返回