搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一维TiO2纳米管阵列薄膜的伏特效应研究

王娜 马洋 陈长松 陈江 伞海生 陈继革 成正东

引用本文:
Citation:

基于一维TiO2纳米管阵列薄膜的伏特效应研究

王娜, 马洋, 陈长松, 陈江, 伞海生, 陈继革, 成正东

Investigation on voltaic effect based on one-dimensional TiO2 nanotube array thin film

Wang Na, Ma Yang, Chen Chang-Song, Chen Jiang, San Hai-Sheng, Chen Ji-Ge, Cheng Zheng-Dong
PDF
导出引用
  • 介绍了一种采用宽禁带半导体二氧化钛纳米管阵列薄膜材料制备伏特效应同位素电池的方法.通过对金属钛片的电化学阳极氧化制备了垂直定向、有序排列的二氧化钛纳米管阵列薄膜,研究了退火条件对二氧化钛纳米管阵列薄膜半导体光电性能的影响.通过与镍-63辐射源的集成封装,形成三明治结构镍-63/二氧化钛纳米管阵列薄膜/钛片的伏特同位素电池.实验结果表明,基于氩气氛围下450℃退火的黑色二氧化钛纳米管阵列薄膜具有高的氧空位缺陷浓度和宽的可见-紫外吸收光谱.在使用辐射总能量为10 mCi的镍-63辐射源时,同位素电池的开路电压为1.02 V,短路电流75.52 nA,最大有效转换效率为22.48%.
    This work is to develop a high-reliability long-life high-conversion-efficiency radio-isotope microbattery in order to meet power requirements of micro-electromechanical systems, micro-sensors, micro-actuators, wireless sensing net, and other electron devices working in harsh circumstances, such as polar, desert, subsea, outer surface, etc. Compared with traditional dry batteries, chemical batteries, fuel cells and solar cells, the radioactive isotope batteries have long service life, higher energy density, strong adaptability to environment, good work stability, no maintenance, and miniaturized size, etc. These advantages make the voltaic battery an attractive alternative. In this paper we present a voltaic battery with enhanced voltaic effect by using a wide-bandgap semiconductor TiO2 nanotube array thin film. An electrochemical anodic oxidation method is used to prepare the vertically oriented and highly ordered TiO2 nanotube array film on Ti plate. Electrolyte solution consists of ammonium fluoride, ethylene glycol, and deionized water. The structure (TiO2 nanotube array with diameter about 80-100 nm, wall thickness about 15-25 nm, and length 9 m) is characterized by field emission scanning electron microscope. The microstructure of the TiO2 nanotube array is characterized using X-ray diffraction. The effects of annealing condition on optical and electrical properties are studied. The electrical property is characterized by Keithley model 2450 source meter semiconductor characterization system in dark at room temperature. The voltaic batteries are assembled as a sandwiched structure (63Ni/TiO2 nanotube arrays film/Ti) using a radioisotope 63Ni plate and TiO2 nanotube array films. The experimental results show that the black TiO2 nanotube array film annealed at 450 ℃ in argon atmosphere could creates high visible-ultraviolet absorption due to a great many of oxygen vacancy defects generated in TiO2 nanotube array film. The oxygen vacancy signals are found by electron spin resonance. Compared with the planar structure, the nano-porous array structure has strong absorption to particles:most of the particles enter into the pores and are reflected or absorbed by the surface of the tube walls. With a 10 mCi 63Ni radiation source, the voltaic battery using black TiO2 nanotube array film can generate an open-circuited voltage of 1.02 V, a short-circuited current of 75.52 nA, and a maximum effective conversion efficiency of 22.48%.
      通信作者: 伞海生, sanhs@xmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61574117)和深圳市科技计划项目(批准号:JCYJ20170306141006600)资助的课题.
      Corresponding author: San Hai-Sheng, sanhs@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61574117) and the Shenzhen Science and Technology Planning Project, China (Grant No. JCYJ20170306141006600).
    [1]

    Zhou Y, Zhang S X, Li G P 2017 Chin. Sci. Bull. 62 1831 (in Chinese) [周毅, 张世旭, 李公平 2017 科学通报 62 1831]

    [2]

    Mark A P, Charles L W, Matthew L W, Eric D L, Robert J S, Denis A W 2014 Prog. Nucl. Energ. 75 117

    [3]

    Gao H, Luo S Z, Zhang H M, Wang H Y 2012 Acta Phys. Sin. 61 176101 (in Chinese)[高晖, 罗顺忠, 张华明, 王和义 2012 物理学报 61 176101]

    [4]

    Rinehart G H 2001 Prog. Nucl. Energ. 39 305

    [5]

    Bower K E, Barbanel Y A, Shreter Y G, Bohnert G W 2002 Polymer, Phosphors, and Voltaics for Radioisotope Microbatteries (Boca Raton Florida:CRC Press) p38

    [6]

    Larry C O, Peter C, Bret J E 2012 Phys. Today 65 35

    [7]

    Zhang H M, Hu R, Wang G Q, Gao H, Liu G P, Luo S Z 2013 At. Energ. Sci. Technol. 47 490 (in Chinese)[张华明, 胡睿, 王关全, 高晖, 刘国平, 罗顺忠 2013 原子能科学技术 47 490]

    [8]

    Luo S Z, Wang G Q, Zhang H M 2011 J. Isot. 24 1 (in Chinese)[罗顺忠, 王关全, 张华明 2011 同位素 24 1]

    [9]

    Clarkson J P, Sun W, Hirschman K D, Gadeken L L 2007 Phys. Status Solid A 204 1536

    [10]

    Liu B J, Chen K P, Kherani N P, Zukotynski S 2009 Appl. Phys. Lett. 95 233112

    [11]

    Sun W, Kherani N P, Hirschman K D, Gadeken L L, Fauchet P M 2005 Adv. Mater. 17 1230

    [12]

    Olsen L C 1973 Energ. Convers. Manage. 13 117

    [13]

    Eiting C, Krishnamoorthy V, Rodgers S, George T, Robertson J D, Brockman J 2006 Appl. Phys. Lett. 88 064101

    [14]

    Cheng Z, Chen X, San H, Feng Z, Liu B 2012 J. Micromech. Microengineer. 22 074011

    [15]

    Tang X, Liu Y, Ding D, Chen D 2012 Sci. China: Technol. Sci. 55 659

    [16]

    Qiao D Y, Chen X J, Ren Y, Yuan W Z 2011 J. Microelectromech. Syst. 20 685

    [17]

    Lee K, Mazare A, Schmuki P 2014 Chem. Rev. 114 9385

    [18]

    Hu B, Lin J, Chen X F 2012 Semicond. Optoelectron. 33 648 (in Chinese) [胡奔, 林佳, 陈险峰 2012 半导体光电 33 648]

    [19]

    Zhang L F, Ma J P, Zhang L, Zhang H X, Yan S J, Yao L N, Luo Z F 2015 J. Isotopes 28 25

    [20]

    Bavykin D V, Walsh F C 2010 Mater. Today 13 66

    [21]

    Diebold iebold U 2003 Surf. Sci. Rep. 48 53

    [22]

    Lu P W 1996 Fundamentals of Inorganic Materials Science (1st Ed.) (Wuhan:Wuhan University of Technology Press) pp60-62 (in Chinese)[陆佩文 1996 无机材料科学基础 (第1版) (武汉:武汉工业大学出版社) 第6062页]

    [23]

    Wang G, Wang H Y, Ling Y C, Tang Y C, Yang X Y Robert C F, Wang C C, Zhang J Z, Yat L 2011 Nano Lett. 11 3026

    [24]

    Paramasivam I, Jha H, Liu N, Schmuki P 2012 Small 8 3073

    [25]

    Beard M C 2011 J. Phys. Chem. Lett. 2 1282

    [26]

    Smith Y R, Sarma B, Mohanty S K, Misra M 2012 ACS Appl. Mater. Interfaces 4 5883

  • [1]

    Zhou Y, Zhang S X, Li G P 2017 Chin. Sci. Bull. 62 1831 (in Chinese) [周毅, 张世旭, 李公平 2017 科学通报 62 1831]

    [2]

    Mark A P, Charles L W, Matthew L W, Eric D L, Robert J S, Denis A W 2014 Prog. Nucl. Energ. 75 117

    [3]

    Gao H, Luo S Z, Zhang H M, Wang H Y 2012 Acta Phys. Sin. 61 176101 (in Chinese)[高晖, 罗顺忠, 张华明, 王和义 2012 物理学报 61 176101]

    [4]

    Rinehart G H 2001 Prog. Nucl. Energ. 39 305

    [5]

    Bower K E, Barbanel Y A, Shreter Y G, Bohnert G W 2002 Polymer, Phosphors, and Voltaics for Radioisotope Microbatteries (Boca Raton Florida:CRC Press) p38

    [6]

    Larry C O, Peter C, Bret J E 2012 Phys. Today 65 35

    [7]

    Zhang H M, Hu R, Wang G Q, Gao H, Liu G P, Luo S Z 2013 At. Energ. Sci. Technol. 47 490 (in Chinese)[张华明, 胡睿, 王关全, 高晖, 刘国平, 罗顺忠 2013 原子能科学技术 47 490]

    [8]

    Luo S Z, Wang G Q, Zhang H M 2011 J. Isot. 24 1 (in Chinese)[罗顺忠, 王关全, 张华明 2011 同位素 24 1]

    [9]

    Clarkson J P, Sun W, Hirschman K D, Gadeken L L 2007 Phys. Status Solid A 204 1536

    [10]

    Liu B J, Chen K P, Kherani N P, Zukotynski S 2009 Appl. Phys. Lett. 95 233112

    [11]

    Sun W, Kherani N P, Hirschman K D, Gadeken L L, Fauchet P M 2005 Adv. Mater. 17 1230

    [12]

    Olsen L C 1973 Energ. Convers. Manage. 13 117

    [13]

    Eiting C, Krishnamoorthy V, Rodgers S, George T, Robertson J D, Brockman J 2006 Appl. Phys. Lett. 88 064101

    [14]

    Cheng Z, Chen X, San H, Feng Z, Liu B 2012 J. Micromech. Microengineer. 22 074011

    [15]

    Tang X, Liu Y, Ding D, Chen D 2012 Sci. China: Technol. Sci. 55 659

    [16]

    Qiao D Y, Chen X J, Ren Y, Yuan W Z 2011 J. Microelectromech. Syst. 20 685

    [17]

    Lee K, Mazare A, Schmuki P 2014 Chem. Rev. 114 9385

    [18]

    Hu B, Lin J, Chen X F 2012 Semicond. Optoelectron. 33 648 (in Chinese) [胡奔, 林佳, 陈险峰 2012 半导体光电 33 648]

    [19]

    Zhang L F, Ma J P, Zhang L, Zhang H X, Yan S J, Yao L N, Luo Z F 2015 J. Isotopes 28 25

    [20]

    Bavykin D V, Walsh F C 2010 Mater. Today 13 66

    [21]

    Diebold iebold U 2003 Surf. Sci. Rep. 48 53

    [22]

    Lu P W 1996 Fundamentals of Inorganic Materials Science (1st Ed.) (Wuhan:Wuhan University of Technology Press) pp60-62 (in Chinese)[陆佩文 1996 无机材料科学基础 (第1版) (武汉:武汉工业大学出版社) 第6062页]

    [23]

    Wang G, Wang H Y, Ling Y C, Tang Y C, Yang X Y Robert C F, Wang C C, Zhang J Z, Yat L 2011 Nano Lett. 11 3026

    [24]

    Paramasivam I, Jha H, Liu N, Schmuki P 2012 Small 8 3073

    [25]

    Beard M C 2011 J. Phys. Chem. Lett. 2 1282

    [26]

    Smith Y R, Sarma B, Mohanty S K, Misra M 2012 ACS Appl. Mater. Interfaces 4 5883

  • [1] 邸淑红, 张阳, 杨会静, 崔乃忠, 李艳坤, 刘会媛, 李伶利, 石凤良, 贾玉璇. 铷簇同位素效应的量化研究. 物理学报, 2023, 72(18): 182101. doi: 10.7498/aps.72.20230778
    [2] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [3] 徐晗, 张璐, 党政. 固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理. 物理学报, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [4] 朱伟君, 陈金鑫, 高宇晗, 杨德仁, 马向阳. 硅基掺铒二氧化钛薄膜发光器件的电致发光: 共掺镱的增强发光作用. 物理学报, 2019, 68(12): 124204. doi: 10.7498/aps.68.20190300
    [5] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [6] 朱学文, 徐利春, 刘瑞萍, 杨致, 李秀燕. N-F共掺杂锐钛矿二氧化钛(101)面纳米管的第一性原理研究. 物理学报, 2015, 64(14): 147103. doi: 10.7498/aps.64.147103
    [7] 任桂明, 郑圆圆, 王丁, 王林, 谌晓洪, 王玲, 马敏, 刘华兵. 氢化氧化铝的同位素效应研究. 物理学报, 2014, 63(23): 233104. doi: 10.7498/aps.63.233104
    [8] 杨素红, 赵立山, 王强, 沈容, 孙刚, 李晨曦, 陆坤权. 以二氧化钛前驱体为基的电流变液的成分分析和机理研究. 物理学报, 2013, 62(16): 164701. doi: 10.7498/aps.62.164701
    [9] 薛将, 潘风明, 裴煜. 钽掺杂二氧化钛薄膜的光电性能研究. 物理学报, 2013, 62(15): 158103. doi: 10.7498/aps.62.158103
    [10] 何敏华, 张端明, 高义华. 镓填充二氧化硅纳米管的电子束诱导的反常膨胀(已撤稿). 物理学报, 2012, 61(18): 186102. doi: 10.7498/aps.61.186102
    [11] 李天晶, 李公平, 马俊平, 高行新. 钴离子注入对二氧化钛晶体的结构和光学性能的影响. 物理学报, 2011, 60(11): 116102. doi: 10.7498/aps.60.116102
    [12] 曹思, 龚佳, 钟澄, 李劲, 蒋益明. 同位素示踪法研究铜薄膜在水汽中的氧化传质机理. 物理学报, 2011, 60(7): 078101. doi: 10.7498/aps.60.078101
    [13] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [14] 龚佳, 蒋益明, 钟澄, 邓博, 刘平, 李劲. Si在水汽中氧化传质机制的H218O/H216O同位素示踪研究. 物理学报, 2009, 58(2): 1305-1309. doi: 10.7498/aps.58.1305
    [15] 刘建业, 郭文军, 左 维, 李希国. 核子-核子碰撞截面对同位素标度参数α的同位旋效应. 物理学报, 2008, 57(9): 5458-5463. doi: 10.7498/aps.57.5458
    [16] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [17] 钱 磊, 滕 枫, 徐 征, 权善玉, 刘德昂, 王元敏, 王永生, 徐叙瑢. 掺杂二氧化钛纳米管对有机电致发光性能的影响. 物理学报, 2006, 55(2): 929-934. doi: 10.7498/aps.55.929
    [18] 李文飞, 张丰收, 陈列文. 化学不稳定性和同位素分布的同位旋效应. 物理学报, 2001, 50(6): 1040-1045. doi: 10.7498/aps.50.1040
    [19] 文小明, 谢崇伟, 林理忠, 崔永杰. 准分子激光作用下二氧化钛的表面变性. 物理学报, 1997, 46(8): 1652-1657. doi: 10.7498/aps.46.1652
    [20] 彭少麒;苏子敏;刘景希. a-Si:H结的横向光生伏特效应. 物理学报, 1989, 38(8): 1235-1244. doi: 10.7498/aps.38.1235
计量
  • 文章访问数:  5266
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-26
  • 修回日期:  2017-12-13
  • 刊出日期:  2019-02-20

/

返回文章
返回