搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用窄刻槽金属光栅实现石墨烯双通道吸收增强

高健 桑田 李俊浪 王啦

引用本文:
Citation:

利用窄刻槽金属光栅实现石墨烯双通道吸收增强

高健, 桑田, 李俊浪, 王啦

Double-channel absorption enhancement of graphene using narrow groove metal grating

Gao Jian, Sang Tian, Li Jun-Lang, Wang La
PDF
导出引用
  • 构建基底/窄刻槽金属光栅/覆盖层/石墨烯结构,利用金属光栅激发的表面等离子体激元共振和窄光栅刻槽支持的法布里-珀罗共振,在可见光波段实现单层石墨烯的双通道吸收增强,并结合简化模型估算出双吸收通道所在位置.在波长462和768 nm处,石墨烯的光吸收效率分别为35.6%和40.1%,相比石墨烯本征光吸收率的增强均超过15.5倍.进一步研究发现由于短波处吸收增强源于金属光栅的表面等离子体激元共振,其吸收特性受覆盖层厚度、刻槽深度和宽度变化的影响较小;而由于长波处吸收增强源于窄刻槽中的法布里-珀罗共振,因此呈现出良好的角度不敏感吸收特性.
    A structure containing substrate/narrow groove metal grating/covering layer/graphene is constructed. The operational principle of the structure is based on the surface plasmon polariton (SPP) resonance excited by the metal grating and the Fabry-Prot (FP) resonance supported by the narrow grating groove. Double-channel absorption enhancement of monolayer graphene is realized in the visible range, and a simplified model is used to estimate the locations of the double-absorption channels. At the wavelengths of 462 nm and 768 nm, the light absorption efficiencies of graphene are 35.6% and 40.1%, respectively, which are more than 15.5 times the intrinsic light absorption of the monolayer graphene. Further analysis shows that the energy of the absorption peak at the short-wavelength position mainly concentrates on the surface of the metal grating, which has an obvious characteristic of the SPP mode. The resonant wavelength of SPP=476 nm, estimated by the simplified model, is basically consistent with the location of the short-wavelength absorption peak at 1=462 nm. The absorption characteristics are less affected by the thickness of the covering layer, the depth and width of the groove. For the long-wavelength absorption peak at 2=768 nm, the energy of the light field in the structure is mainly localized in the metal groove, which has a significant cavity resonance characteristic. Because the SPP resonance generates a strong electromagnetic coupling in the metal groove, the energy of the optical field is strongly confined by the grating groove. The localized light field energy gradually leaks out and is absorbed by the graphene layer above the groove, resulting in a significant increase in the light absorption efficiency of the graphene. The resonance position estimated by the FP cavity resonance model is 658 nm, which is larger than the actual absorption peak position 2=768 nm. This is because the exact length of the FP cavity is affected by the thickness of the SiO2 covering layer, and the presence of the SiO2 covering layer will enlarge the exact length of the FP cavity. To further increase the depth of the groove, the agreement between the estimated resonance position and the actual absorption peak will continue to increase. However, the increase of the thickness of the SiO2 covering layer will weaken the magnetic field enhancement effect in the groove, resulting in the decrease of light absorption efficiency of the structure and graphene. Since the absorption enhancement at the long-wavelength peak originates from the FP resonance in the narrow groove, it exhibits a good angle-insensitive absorption characteristic. The double-channel absorption enhancement of graphene based on the narrow grooved gratings may have potential applications in the fields of photodetection and solar cells.
      通信作者: 桑田, sangt@jiangnan.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11811530052)、江苏省轻工光电工程技术研究中心(批准号:BM2014402)和江苏省研究生科研创新、实践创新计划(批准号:SJCX18_0634)资助的课题.
      Corresponding author: Sang Tian, sangt@jiangnan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11811530052), the Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, China (Grant No. BM2014402), and the Postgraduate Research Practice Innovation Program of Jiangsu Provence, China (Grant No. SJCX18_0634).
    [1]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [2]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [3]

    Pirruccio G, Martn M L, Lozano G, Gmez R J 2013 ACS Nano 7 4810

    [4]

    Lee S, Tran T Q, Kim M, Heo H, Heo J, Kim S 2015 Opt. Express 23 33350

    [5]

    Zheng G, Zhang H, Xu L, Liu Y 2016 Opt. Lett. 41 2274

    [6]

    Wang R, Sang T, Wang L, Gao J, Wang Y, Wang J 2018 Optik 157 651

    [7]

    Sang T, Wang R, Li J, Zhou J, Wang Y 2018 Opt. Commun. 413 255

    [8]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G, Mueller T 2012 Nano Lett. 12 2773

    [9]

    Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501 (in Chinese) [梁振江, 刘海霞, 牛燕雄, 尹贻恒 2016 物理学报 65 138501]

    [10]

    Lu H, Cumming B P, Gu M 2015 Opt. Lett. 40 3647

    [11]

    Song S, Chen Q, Jin L, Sun F 2013 Nanoscale 5 9615

    [12]

    Zhao B, Zhao J M, Zhang Z M 2014 Appl. Phys. Lett. 105 31905

    [13]

    Cai Y, Zhu J, Liu Q H 2015 Appl. Phys. Lett. 106 43105

    [14]

    Wang W, Klots A, Yang Y, Li W, Kravchenko I I, Briggs D P, Bolotin K I, Valentine J 2015 Appl. Phys. Lett. 106 181104

    [15]

    Zheng G, Zou X, Chen Y, Xu L, Liu Y 2017 Plasmonics 12 1177

    [16]

    Thareja V, Kang J H, Yuan H, Milaninia K M, Hwang H Y, Cui Y, Kik P G, Brongersma M L 2015 Nano Lett. 15 1570

    [17]

    Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C 2017 Opt. Lett. 42 3052

    [18]

    Zhu B, Ren G, Zheng S, Lin Z, Jian S 2013 Opt. Commun. 308 204

    [19]

    Lu H, Gan X, Jia B, Mao D, Zhao J 2016 Opt. Lett. 41 4743

    [20]

    Hu J H, Huang Y Q, Duan X F, Wang Q, Zhang X, Wang J, Ren X M 2014 Appl. Phys. Lett. 105 221113

    [21]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 52104

    [22]

    Ke S, Wang B, Huang H, Long H, Wang K, Lu P 2015 Opt. Express 23 8888

    [23]

    Guo C C, Zhu Z H, Yuan X D, Ye W M, Liu K, Zhang J F, Xu W, Qin S Q 2016 Adv. Opt. Mater. 4 1955

    [24]

    Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679

    [25]

    Zhan T R, Zhao F Y, Hu X H, Liu X H, Zi J 2012 Phys. Rev. B 86 165416

    [26]

    Pu M, Chen P, Wang Y, Zhao Z, Wang C, Huang C, Hu C, Luo X 2013 Opt. Express 21 11618

    [27]

    Iorsh I V, Shadrivov I V, Belov P A, Kivshar Y S 2013 Phys. Rev. B 88 195422

    [28]

    Deng B, Guo Q, Li C, Wang H, Ling X, Farmer D B, Han S, Kong J, Xia F 2016 ACS Nano 10 11172

    [29]

    Wu P C, Papasimakis N, Tsai D P 2016 Phys. Rev. Appl. 6 44019

    [30]

    Liu B, Tang C, Chen J, Wang Q, Pei M, Tang H 2017 Opt. Express 25 12061

    [31]

    Hanson G W 2008 J. Appl. Phys. 103 64302

    [32]

    Wu J, Zhou C, Yu J, Cao H, Li S, Jia W 2014 IEEE Photon. Technol. Lett. 26 949

    [33]

    Wu Y K R, Hollowell A E, Zhang C, Guo L J 2013 Sci. Rep. 3 1194

    [34]

    Shao H, Wang J, Liu D, Hu Z D, Xia X, Sang T 2017 Plasmonics 12 361

    [35]

    Chu J K, Wang Q Y, Wang Z W, Wang L D 2015 Acta Phys. Sin. 64 164206 (in Chinese) [褚金奎, 王倩怡, 王志文, 王立鼎 2015 物理学报 64 164206]

    [36]

    Sang T, Wang Z, Wang L, Wu Y, Chen L 2006 J. Opt. A: Pure Appl. Opt. 8 62

  • [1]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [2]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [3]

    Pirruccio G, Martn M L, Lozano G, Gmez R J 2013 ACS Nano 7 4810

    [4]

    Lee S, Tran T Q, Kim M, Heo H, Heo J, Kim S 2015 Opt. Express 23 33350

    [5]

    Zheng G, Zhang H, Xu L, Liu Y 2016 Opt. Lett. 41 2274

    [6]

    Wang R, Sang T, Wang L, Gao J, Wang Y, Wang J 2018 Optik 157 651

    [7]

    Sang T, Wang R, Li J, Zhou J, Wang Y 2018 Opt. Commun. 413 255

    [8]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G, Mueller T 2012 Nano Lett. 12 2773

    [9]

    Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501 (in Chinese) [梁振江, 刘海霞, 牛燕雄, 尹贻恒 2016 物理学报 65 138501]

    [10]

    Lu H, Cumming B P, Gu M 2015 Opt. Lett. 40 3647

    [11]

    Song S, Chen Q, Jin L, Sun F 2013 Nanoscale 5 9615

    [12]

    Zhao B, Zhao J M, Zhang Z M 2014 Appl. Phys. Lett. 105 31905

    [13]

    Cai Y, Zhu J, Liu Q H 2015 Appl. Phys. Lett. 106 43105

    [14]

    Wang W, Klots A, Yang Y, Li W, Kravchenko I I, Briggs D P, Bolotin K I, Valentine J 2015 Appl. Phys. Lett. 106 181104

    [15]

    Zheng G, Zou X, Chen Y, Xu L, Liu Y 2017 Plasmonics 12 1177

    [16]

    Thareja V, Kang J H, Yuan H, Milaninia K M, Hwang H Y, Cui Y, Kik P G, Brongersma M L 2015 Nano Lett. 15 1570

    [17]

    Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C 2017 Opt. Lett. 42 3052

    [18]

    Zhu B, Ren G, Zheng S, Lin Z, Jian S 2013 Opt. Commun. 308 204

    [19]

    Lu H, Gan X, Jia B, Mao D, Zhao J 2016 Opt. Lett. 41 4743

    [20]

    Hu J H, Huang Y Q, Duan X F, Wang Q, Zhang X, Wang J, Ren X M 2014 Appl. Phys. Lett. 105 221113

    [21]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 52104

    [22]

    Ke S, Wang B, Huang H, Long H, Wang K, Lu P 2015 Opt. Express 23 8888

    [23]

    Guo C C, Zhu Z H, Yuan X D, Ye W M, Liu K, Zhang J F, Xu W, Qin S Q 2016 Adv. Opt. Mater. 4 1955

    [24]

    Su Z, Yin J, Zhao X 2015 Opt. Express 23 1679

    [25]

    Zhan T R, Zhao F Y, Hu X H, Liu X H, Zi J 2012 Phys. Rev. B 86 165416

    [26]

    Pu M, Chen P, Wang Y, Zhao Z, Wang C, Huang C, Hu C, Luo X 2013 Opt. Express 21 11618

    [27]

    Iorsh I V, Shadrivov I V, Belov P A, Kivshar Y S 2013 Phys. Rev. B 88 195422

    [28]

    Deng B, Guo Q, Li C, Wang H, Ling X, Farmer D B, Han S, Kong J, Xia F 2016 ACS Nano 10 11172

    [29]

    Wu P C, Papasimakis N, Tsai D P 2016 Phys. Rev. Appl. 6 44019

    [30]

    Liu B, Tang C, Chen J, Wang Q, Pei M, Tang H 2017 Opt. Express 25 12061

    [31]

    Hanson G W 2008 J. Appl. Phys. 103 64302

    [32]

    Wu J, Zhou C, Yu J, Cao H, Li S, Jia W 2014 IEEE Photon. Technol. Lett. 26 949

    [33]

    Wu Y K R, Hollowell A E, Zhang C, Guo L J 2013 Sci. Rep. 3 1194

    [34]

    Shao H, Wang J, Liu D, Hu Z D, Xia X, Sang T 2017 Plasmonics 12 361

    [35]

    Chu J K, Wang Q Y, Wang Z W, Wang L D 2015 Acta Phys. Sin. 64 164206 (in Chinese) [褚金奎, 王倩怡, 王志文, 王立鼎 2015 物理学报 64 164206]

    [36]

    Sang T, Wang Z, Wang L, Wu Y, Chen L 2006 J. Opt. A: Pure Appl. Opt. 8 62

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] 史鹏飞, 马馨莹, 向川, 赵宏革, 李渊, 高仁璟, 刘书田. 幅值可控的逆反射和镜像反射双通道超表面结构拓扑优化设计. 物理学报, 2023, 72(24): 247801. doi: 10.7498/aps.72.20230775
    [3] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] 郭晓蒙, 青芳竹, 李雪松. 石墨烯在金属表面防腐中的应用. 物理学报, 2021, 70(9): 098102. doi: 10.7498/aps.70.20210349
    [5] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明. 物理学报, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [6] 江孝伟, 武华, 袁寿财. 基于金属光栅实现石墨烯三通道光吸收增强. 物理学报, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [7] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度. 物理学报, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [8] 蒲晓庆, 吴静, 郭强, 蔡建臻. 石墨烯与金属的欧姆接触理论研究. 物理学报, 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [9] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [10] 秦志辉. 类石墨烯锗烯研究进展. 物理学报, 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [11] 郭辉, 路红亮, 黄立, 王雪艳, 林晓, 王业亮, 杜世萱, 高鸿钧. 金属衬底上高质量大面积石墨烯的插层及其机制. 物理学报, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [12] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [13] 李峰, 肖传云, 阚二军, 陆瑞锋, 邓开明. 钯和铂金属在石墨烯表面不同生长机理第一性原理研究. 物理学报, 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [14] 于海玲, 朱嘉琦, 曹文鑫, 韩杰才. 金属催化制备石墨烯的研究进展. 物理学报, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [15] 沈云, 于国萍, 傅继武. 一维反激光器完美相干吸收理论分析. 物理学报, 2012, 61(16): 164204. doi: 10.7498/aps.61.164204
    [16] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 田相龙. Fabry-Perot腔谐振对横电波激励下亚波长一维金属光栅的异常透射性的作用. 物理学报, 2011, 60(2): 024217. doi: 10.7498/aps.60.024217
    [17] 陈凡, 郝军, 李红根, 曹庄琪. 基于古斯-汉欣位移的双通道窄带滤波器. 物理学报, 2011, 60(7): 074223. doi: 10.7498/aps.60.074223
    [18] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 邓晓斌. 横电波激励下亚波长一维金属光栅的异常透射性. 物理学报, 2010, 59(6): 4030-4035. doi: 10.7498/aps.59.4030
    [19] 刘敏敏, 张国平, 邹 明. 二元矩形金属光栅衍射增强电磁理论. 物理学报, 2006, 55(9): 4608-4612. doi: 10.7498/aps.55.4608
    [20] 谈春雷, 易永祥, 汪国平. 一维金属光栅的透射光学特性. 物理学报, 2002, 51(5): 1063-1067. doi: 10.7498/aps.51.1063
计量
  • 文章访问数:  5769
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-28
  • 修回日期:  2018-05-28
  • 刊出日期:  2019-09-20

/

返回文章
返回