搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基超导体的扫描隧道显微镜研究进展

顾强强 万思源 杨欢 闻海虎

引用本文:
Citation:

铁基超导体的扫描隧道显微镜研究进展

顾强强, 万思源, 杨欢, 闻海虎

Studies of scanning tunneling spectroscopy on iron-based superconductors

Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu
PDF
导出引用
  • 铁基高温超导体自2008年发现以来,对其超导电性的研究一直是一个热门的课题.扫描隧道显微镜能够在原子尺度进行表面形貌和隧道谱测量,从微观角度研究电子态密度的信息,是研究超导的重要谱学手段.近年来,在铁基超导电性方面,扫描隧道显微镜实验已经积累了一些有价值的结果,本文进行了总结介绍.铁基超导体是多带多超导能隙的超导体,不同材料的费米面结构有很大的变化.扫描隧道显微镜证明,同时有电子和空穴费米面最佳掺杂的铁基样品超导能隙结构是无节点并带有能隙符号变化的s波.而进一步的实验发现在没有空穴费米面的FeSe基超导体中也存在能隙符号的相反,对统一铁基超导体的配对对称性提供了重要实验证据.此外,扫描隧道显微镜在研究铁基超导体的电子向列相、浅能带特性、可能的拓扑特性方面,提供了重要的实验数据.本文对上述相关内容进行了总结,并做了相应分析和讨论.
    Since the discovery of iron-based superconductors in 2008, it has been a hot topic to research the pairing mechanism of superconductivity. Scanning tunneling microscopy (STM) can be used to detect the electronic information in nano-scale, hence, it is an important tool to do research on superconductivity. In recent 10 years, many valuable works have been carried out by STM in iron-based superconductors. In this paper, we try to make a brief introduction of the STM works in iron-based superconductors. Since the iron-based superconductors have multiple bands and superconducting gaps, the Fermi surface topology can change significantly among different materials. There are some evidences to prove a nodeless s-wave pairing in the optimally-doped iron-based superconductors with both electron and hole pockets by STM experiments. Furthermore, it has been demonstrated that FeSe-based materials with only electron pockets also have a sign-change order parameter, which provides a robust evidence for the unified picture of the electron pairing in iron-based superconductors. Besides, STM experiments provide fruitful information about the novel electronic properties including the electronic nematicity, shallow band effect, and possible topological superconductivity. Finally, we also give perspectives about the STM studies in iron based superconductors.
      Corresponding author: Yang Huan, huanyang@nju.edu.cn;hhwen@nju.edu.cn ; Wen Hai-Hu, huanyang@nju.edu.cn;hhwen@nju.edu.cn
    • Funds: Project supported by the National Key Research and Development Plan of China (Grant No. 2016YFA0300401) and the National Natural Science Foundation of China (Grant No. 11534005).
    [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Ame. Chem. Soc. 130 3296

    [2]

    McMillan W L 1967 Phys. Rev. 167 331

    [3]

    Wen H H, Li S L 2011 Annu. Rev. Condens. Matter Phys. 2 121

    [4]

    Dai P 2015 Rev. Mod. Phys. 87 855

    [5]

    Chubukov A 2012 Annu. Rev. Condens. Matter Phys. 3 57

    [6]

    Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 Nat. Sci. Rev. 1 371

    [7]

    Hoffman J E 2011 Rep. Prog. Phys. 74 124513

    [8]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Mater. 12 605

    [9]

    Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B, Feng D L 2013 Nat. Mater. 12 634

    [10]

    Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z, Feng D L 2015 Phys. Rev. B 92 060504

    [11]

    Zhao L, Liang A J, Yuan D N, Hu Y, Liu D F, Huang J W, He S L, Shen B, Xu Y, Liu X, Yu L, Liu G D, Zhou H X, Huang Y L, Dong X L, Zhou F, Liu K, Lu Z Y, Zhao Z X, Chen C T, Xu Z Y, Zhou X J 2016 Nat. Commun. 7 10608

    [12]

    Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nat. Mater. 10 273

    [13]

    Zhao L, Mou D, Liu S, Jia X, He J, Peng Y, Yu L, Liu X, Liu G, He S, Dong X, Zhang J, He J B, Wang D M, Chen G F, Guo J G, Chen X L, Wang X, Peng Q, Wang Z, Zhang S, Yang F, Xu Z, Chen C, Zhou X J 2011 Phys. Rev. B 83 140508

    [14]

    Fang D L, Shi X, Du Z Y, Richard P, Yang H, Wu X X, Zhang P, Qian T, Ding X X, Wang Z Y, Kim T K, Hoesch M, Wang A F, Chen X H, Hu J P, Ding H, Wen H H 2015 Phys. Rev. B 92 144513

    [15]

    Christianson A D, Goremychkin E A, Osborn R, Rosenkranz S, Lumsden M D, Malliakas C D, Todorov I S, Claus H, Chung D Y, Kanatzidis M G, Bewley R I, Guidi T 2008 Nature 456 930

    [16]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [17]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [18]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [19]

    Kontani H, Onari S 2010 Phys. Rev. Lett. 104 157001

    [20]

    Hanaguri T, Niitaka S, Kuroki K, Takagi H 2010 Science 328 474

    [21]

    Anderson P W 1959 J. Phys. Chem. Solids 11 26

    [22]

    Balatsky A, Zhu J X, Vekhter I 2006 Rev. Mod. Phys. 78 373

    [23]

    Pan S H, Hudson E W, Lang K M, Eisaki H, Uchida S, Davis J C 2000 Nature 403 746

    [24]

    Kariyado T, Ogata M 2010 J. Phys. Soc. Jpn. 79 083704

    [25]

    Yang H, Wang Z, Fang D, Li S, Kariyado T, Chen G, Ogata M, Das T, Balasky A V, Wen H H 2012 Phys. Rev. B 86 214512

    [26]

    Yang H, Wang Z, Fang D, Deng Q, Wang Q H, Xiang Y Y, Yang Y, Wen H H 2013 Nat. Commun. 4 2749

    [27]

    Hirschfeld P J, Altefeld D, Eremin I, Mazin I I 2015 Phys. Rev. B 92 184513

    [28]

    Sprau P O, Kostin A, Kreise A, Bhmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M, Davis J C 2017 Science 357 75

    [29]

    Du Z, Yang X, Altenfeld D, Gu Q, Yang H, Eremin I, Hirschfeld P J, Mazin I I, Lin H, Zhu X, Wen H H 2018 Nat. Phys. 14 134

    [30]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P W, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [31]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146

    [32]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [33]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [34]

    Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X, Xue Q K 2011 Science 332 1410

    [35]

    Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, Lhneysen H V, Shibauchi T, Matsuda Y 2014 Proc. Natl. Acad. Sci. USA 111 16309

    [36]

    Jiao L, Huang C L, Rler S, Koz C, Rler U K, Schwarz U, Wirth S 2017 Sci. Rep. 7 44024

    [37]

    Chen G Y, Zhu X, Yang H, Wen H H 2017 Phys. Rev. B 96 064524

    [38]

    Li M, Hone N R L, Chi S, Liang R X, Hardy W N, Bonn D A, Girt E, Broun D M 2016 New J. Phys. 18 082001

    [39]

    Hope P B, Chi S, Bonn D A, Liang R, Hardy W N, Wolf T, Meingast C, Doiron L N, Taillefer L 2016 Phys. Rev. Lett. 117 097003

    [40]

    Teknowijoyo S, Cho K, Tanatar M A, Gonzales J, Bhmer A E, Cavani O, Mishra V, Hirschfeld P J, Bud'ko S L, Canfield P C, Prozorov R 2016 Phys. Rev. B 94 064521

    [41]

    Du Z Y, Yang X, Lin H, Fang D L, Du G, Xing J, Yang H, Zhu X Y, Wen H H 2016 Nat. Commun. 7 10565

    [42]

    Zhang Y, Lee J J, Moore R G, Li W, Yi M, Hashimoto M, Lu D H, Devereaux T P, Lee D H, Shen Z X 2016 Phys. Phys. Rev. Lett. 117 117001

    [43]

    Gu Q, Wan S, Du Z, Yang X, Yang H, Lin H, Zhu X, Wen H 2018 Phys. Rev. B 98 134503

    [44]

    Du Z Y, Yang H, Wen H H 2018 Physics 47 1 (in Chinese)[杜增义, 杨欢, 闻海虎 2018 物理 47 1]

    [45]

    Wang Q, Zhang W, Chen W, Xing Y, Sun Y, Wang Z, Mei J W, Wang Z, Wang L, Ma X C, Liu F, Xue Q K, Wang J 2017 2D Mater. 4 034004

    [46]

    Chuang T M, Allan M P, Lee J, Xie Y, Ni N, Bud'ko S L, Boebinger G S, Canfield P C, Davis J C 2010 Science 327 181

    [47]

    Zhou X D, Ye C, Cai P, Wang X F, Chen X H, Wang Y Y 2011 Phys. Rev. Lett. 106 087001

    [48]

    Rosenthal E P, Andrade E F, Arguello C J, Fernandes R M, Xing L Y, Wang X C, Jin C Q, Millis A J, Pasupathy A N 2014 Nat. Phys. 10 225

    [49]

    Chu J H, Analytis J G, de Greve K, McMahon P L, Islam Z, Yamamoto Y, Fisher I R 2010 Science 329 824

    [50]

    Tanatar M A, Blomberg E C, Kreyssig A, Kim M G, Ni N, Thaler A, Bud'ko S L, Canfield P C, Goldman A I, Mazin I I, Prozorov R 2010 Phys. Rev. B 81 184508

    [51]

    Deng Q, Liu J, Xing J, Yang H, Wen H H 2015 Phys. Rev. B 91 020508

    [52]

    Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97

    [53]

    Kostin A, Sprau P O, Kreisel A, Chong Y X, Bhmer A E, Canfield P C, Hirschfeld P J, Andersen B M, Davis J C 2018 Nat. Mater. 17 869

    [54]

    Caroli C, de Gennes P G, Matricon J 1964 J. Phys. Lett. 9 307

    [55]

    Hayashi N, Isoshima T, Ichioka M, Machida K 1998 Phys. Rev. Lett. 80 2921

    [56]

    Chen M Y, Chen X Y, Yang H, Du Z Y, Zhu X Y, Wang E Y, Wen H H 2018 Nat. Commun. 9 970

    [57]

    Lubashevsky Y, Lahoud E, Chashka K, Podolsky D, Kanigel A 2012 Nat. Phys. 8 309

    [58]

    Rinott S, Chashka K B, Ribak A, Rienks E D L, Taleb -Ibrahimi A, Fevre P L, Bertran F, Randeria M, Kanigel A 2017 Sci. Adv. 3 e1602372

    [59]

    Yang H, Chen G, Zhu X, Xing J, Wen H H 2017 Phys. Rev. B 96 064501

    [60]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [61]

    Ando Y, Fu L 2015 Annu. Rev. Condens. Matter Phys. 6 361

    [62]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001

    [63]

    Wang H, Wang H, Liu H, Lu H, Yang W, Jia S, Liu X J, Xie X C, Wei J, Wang J 2016 Nat. Mater. 15 38

    [64]

    Wang Z J, Zhang P, Xu G, Zeng L K, Miao H, Xu X Y, Qian T, Weng H M, Richard P, Fedorov A V, Ding H, Dai X, Fang Z 2015 Phys. Rev. B 92 115119

    [65]

    Wu X X, Qin S, Liang Y, Fan H, Hu J 2016 Phys. Rev. B 93 115129

    [66]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H, Shin S 2018 Science 360 182

    [67]

    Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H, Gao H J 2018 Science 362 333

  • [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Ame. Chem. Soc. 130 3296

    [2]

    McMillan W L 1967 Phys. Rev. 167 331

    [3]

    Wen H H, Li S L 2011 Annu. Rev. Condens. Matter Phys. 2 121

    [4]

    Dai P 2015 Rev. Mod. Phys. 87 855

    [5]

    Chubukov A 2012 Annu. Rev. Condens. Matter Phys. 3 57

    [6]

    Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 Nat. Sci. Rev. 1 371

    [7]

    Hoffman J E 2011 Rep. Prog. Phys. 74 124513

    [8]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Mater. 12 605

    [9]

    Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B, Feng D L 2013 Nat. Mater. 12 634

    [10]

    Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z, Feng D L 2015 Phys. Rev. B 92 060504

    [11]

    Zhao L, Liang A J, Yuan D N, Hu Y, Liu D F, Huang J W, He S L, Shen B, Xu Y, Liu X, Yu L, Liu G D, Zhou H X, Huang Y L, Dong X L, Zhou F, Liu K, Lu Z Y, Zhao Z X, Chen C T, Xu Z Y, Zhou X J 2016 Nat. Commun. 7 10608

    [12]

    Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nat. Mater. 10 273

    [13]

    Zhao L, Mou D, Liu S, Jia X, He J, Peng Y, Yu L, Liu X, Liu G, He S, Dong X, Zhang J, He J B, Wang D M, Chen G F, Guo J G, Chen X L, Wang X, Peng Q, Wang Z, Zhang S, Yang F, Xu Z, Chen C, Zhou X J 2011 Phys. Rev. B 83 140508

    [14]

    Fang D L, Shi X, Du Z Y, Richard P, Yang H, Wu X X, Zhang P, Qian T, Ding X X, Wang Z Y, Kim T K, Hoesch M, Wang A F, Chen X H, Hu J P, Ding H, Wen H H 2015 Phys. Rev. B 92 144513

    [15]

    Christianson A D, Goremychkin E A, Osborn R, Rosenkranz S, Lumsden M D, Malliakas C D, Todorov I S, Claus H, Chung D Y, Kanatzidis M G, Bewley R I, Guidi T 2008 Nature 456 930

    [16]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [17]

    Mazin I I, Singh D J, Johannes M D, Du M H 2008 Phys. Rev. Lett. 101 057003

    [18]

    Kuroki K, Onari S, Arita R, Usui H, Tanaka Y, Kontani H, Aoki H 2008 Phys. Rev. Lett. 101 087004

    [19]

    Kontani H, Onari S 2010 Phys. Rev. Lett. 104 157001

    [20]

    Hanaguri T, Niitaka S, Kuroki K, Takagi H 2010 Science 328 474

    [21]

    Anderson P W 1959 J. Phys. Chem. Solids 11 26

    [22]

    Balatsky A, Zhu J X, Vekhter I 2006 Rev. Mod. Phys. 78 373

    [23]

    Pan S H, Hudson E W, Lang K M, Eisaki H, Uchida S, Davis J C 2000 Nature 403 746

    [24]

    Kariyado T, Ogata M 2010 J. Phys. Soc. Jpn. 79 083704

    [25]

    Yang H, Wang Z, Fang D, Li S, Kariyado T, Chen G, Ogata M, Das T, Balasky A V, Wen H H 2012 Phys. Rev. B 86 214512

    [26]

    Yang H, Wang Z, Fang D, Deng Q, Wang Q H, Xiang Y Y, Yang Y, Wen H H 2013 Nat. Commun. 4 2749

    [27]

    Hirschfeld P J, Altefeld D, Eremin I, Mazin I I 2015 Phys. Rev. B 92 184513

    [28]

    Sprau P O, Kostin A, Kreise A, Bhmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M, Davis J C 2017 Science 357 75

    [29]

    Du Z, Yang X, Altenfeld D, Gu Q, Yang H, Eremin I, Hirschfeld P J, Mazin I I, Lin H, Zhu X, Wen H H 2018 Nat. Phys. 14 134

    [30]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P W, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [31]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146

    [32]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [33]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [34]

    Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L L, Jia J F, Hung H H, Wu C J, Ma X C, Chen X, Xue Q K 2011 Science 332 1410

    [35]

    Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, Lhneysen H V, Shibauchi T, Matsuda Y 2014 Proc. Natl. Acad. Sci. USA 111 16309

    [36]

    Jiao L, Huang C L, Rler S, Koz C, Rler U K, Schwarz U, Wirth S 2017 Sci. Rep. 7 44024

    [37]

    Chen G Y, Zhu X, Yang H, Wen H H 2017 Phys. Rev. B 96 064524

    [38]

    Li M, Hone N R L, Chi S, Liang R X, Hardy W N, Bonn D A, Girt E, Broun D M 2016 New J. Phys. 18 082001

    [39]

    Hope P B, Chi S, Bonn D A, Liang R, Hardy W N, Wolf T, Meingast C, Doiron L N, Taillefer L 2016 Phys. Rev. Lett. 117 097003

    [40]

    Teknowijoyo S, Cho K, Tanatar M A, Gonzales J, Bhmer A E, Cavani O, Mishra V, Hirschfeld P J, Bud'ko S L, Canfield P C, Prozorov R 2016 Phys. Rev. B 94 064521

    [41]

    Du Z Y, Yang X, Lin H, Fang D L, Du G, Xing J, Yang H, Zhu X Y, Wen H H 2016 Nat. Commun. 7 10565

    [42]

    Zhang Y, Lee J J, Moore R G, Li W, Yi M, Hashimoto M, Lu D H, Devereaux T P, Lee D H, Shen Z X 2016 Phys. Phys. Rev. Lett. 117 117001

    [43]

    Gu Q, Wan S, Du Z, Yang X, Yang H, Lin H, Zhu X, Wen H 2018 Phys. Rev. B 98 134503

    [44]

    Du Z Y, Yang H, Wen H H 2018 Physics 47 1 (in Chinese)[杜增义, 杨欢, 闻海虎 2018 物理 47 1]

    [45]

    Wang Q, Zhang W, Chen W, Xing Y, Sun Y, Wang Z, Mei J W, Wang Z, Wang L, Ma X C, Liu F, Xue Q K, Wang J 2017 2D Mater. 4 034004

    [46]

    Chuang T M, Allan M P, Lee J, Xie Y, Ni N, Bud'ko S L, Boebinger G S, Canfield P C, Davis J C 2010 Science 327 181

    [47]

    Zhou X D, Ye C, Cai P, Wang X F, Chen X H, Wang Y Y 2011 Phys. Rev. Lett. 106 087001

    [48]

    Rosenthal E P, Andrade E F, Arguello C J, Fernandes R M, Xing L Y, Wang X C, Jin C Q, Millis A J, Pasupathy A N 2014 Nat. Phys. 10 225

    [49]

    Chu J H, Analytis J G, de Greve K, McMahon P L, Islam Z, Yamamoto Y, Fisher I R 2010 Science 329 824

    [50]

    Tanatar M A, Blomberg E C, Kreyssig A, Kim M G, Ni N, Thaler A, Bud'ko S L, Canfield P C, Goldman A I, Mazin I I, Prozorov R 2010 Phys. Rev. B 81 184508

    [51]

    Deng Q, Liu J, Xing J, Yang H, Wen H H 2015 Phys. Rev. B 91 020508

    [52]

    Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97

    [53]

    Kostin A, Sprau P O, Kreisel A, Chong Y X, Bhmer A E, Canfield P C, Hirschfeld P J, Andersen B M, Davis J C 2018 Nat. Mater. 17 869

    [54]

    Caroli C, de Gennes P G, Matricon J 1964 J. Phys. Lett. 9 307

    [55]

    Hayashi N, Isoshima T, Ichioka M, Machida K 1998 Phys. Rev. Lett. 80 2921

    [56]

    Chen M Y, Chen X Y, Yang H, Du Z Y, Zhu X Y, Wang E Y, Wen H H 2018 Nat. Commun. 9 970

    [57]

    Lubashevsky Y, Lahoud E, Chashka K, Podolsky D, Kanigel A 2012 Nat. Phys. 8 309

    [58]

    Rinott S, Chashka K B, Ribak A, Rienks E D L, Taleb -Ibrahimi A, Fevre P L, Bertran F, Randeria M, Kanigel A 2017 Sci. Adv. 3 e1602372

    [59]

    Yang H, Chen G, Zhu X, Xing J, Wen H H 2017 Phys. Rev. B 96 064501

    [60]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [61]

    Ando Y, Fu L 2015 Annu. Rev. Condens. Matter Phys. 6 361

    [62]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001

    [63]

    Wang H, Wang H, Liu H, Lu H, Yang W, Jia S, Liu X J, Xie X C, Wei J, Wang J 2016 Nat. Mater. 15 38

    [64]

    Wang Z J, Zhang P, Xu G, Zeng L K, Miao H, Xu X Y, Qian T, Weng H M, Richard P, Fedorov A V, Ding H, Dai X, Fang Z 2015 Phys. Rev. B 92 115119

    [65]

    Wu X X, Qin S, Liang Y, Fan H, Hu J 2016 Phys. Rev. B 93 115129

    [66]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H, Shin S 2018 Science 360 182

    [67]

    Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H, Gao H J 2018 Science 362 333

  • [1] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介. 物理学报, 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [2] 胡江平. 探索非常规高温超导体. 物理学报, 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [3] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质. 物理学报, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [4] 孔令元, 丁洪. 铁基超导涡旋演生马约拉纳零能模. 物理学报, 2020, 69(11): 110301. doi: 10.7498/aps.69.20200717
    [5] 郝宁, 胡江平. 铁基超导中拓扑量子态研究进展. 物理学报, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [6] 金士锋, 郭建刚, 王刚, 陈小龙. 新型FeSe基超导材料研究进展. 物理学报, 2018, 67(20): 207412. doi: 10.7498/aps.67.20181701
    [7] 牟刚, 马永辉. 铁基超导1111体系CaFeAsF的单晶生长和物性研究. 物理学报, 2018, 67(17): 177401. doi: 10.7498/aps.67.20181371
    [8] 李世亮, 刘曌玉, 谷延红. 利用单轴压强下的电阻变化研究铁基超导体中的向列涨落. 物理学报, 2018, 67(12): 127401. doi: 10.7498/aps.67.20180627
    [9] 王志成, 曹光旱. 新型交生结构自掺杂铁基超导体. 物理学报, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [10] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [11] 王乃舟, 石孟竹, 雷彬, 陈仙辉. FeSe基超导体的探索与物性研究. 物理学报, 2018, 67(20): 207408. doi: 10.7498/aps.67.20181496
    [12] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [13] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [14] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择. 物理学报, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [15] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究. 物理学报, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [16] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为. 物理学报, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [17] 赵敬龙, 董正超, 仲崇贵, 李诚迪. 量子线/铁基超导隧道结中隧道谱的研究. 物理学报, 2015, 64(5): 057401. doi: 10.7498/aps.64.057401
    [18] 杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎. 铁基超导体FeSe0.5Te0.5表面隧道谱的研究. 物理学报, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [19] 李斌, 邢钟文, 刘楣. LiFeAs超导体中磁性与声子软化. 物理学报, 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [20] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性. 物理学报, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
计量
  • 文章访问数:  4372
  • PDF下载量:  351
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-09
  • 修回日期:  2018-10-17
  • 刊出日期:  2019-10-20

铁基超导体的扫描隧道显微镜研究进展

    基金项目: 国家重点研发计划(批准号:2016YFA0300401)和国家自然科学基金(批准号:11534005)资助的课题.

摘要: 铁基高温超导体自2008年发现以来,对其超导电性的研究一直是一个热门的课题.扫描隧道显微镜能够在原子尺度进行表面形貌和隧道谱测量,从微观角度研究电子态密度的信息,是研究超导的重要谱学手段.近年来,在铁基超导电性方面,扫描隧道显微镜实验已经积累了一些有价值的结果,本文进行了总结介绍.铁基超导体是多带多超导能隙的超导体,不同材料的费米面结构有很大的变化.扫描隧道显微镜证明,同时有电子和空穴费米面最佳掺杂的铁基样品超导能隙结构是无节点并带有能隙符号变化的s波.而进一步的实验发现在没有空穴费米面的FeSe基超导体中也存在能隙符号的相反,对统一铁基超导体的配对对称性提供了重要实验证据.此外,扫描隧道显微镜在研究铁基超导体的电子向列相、浅能带特性、可能的拓扑特性方面,提供了重要的实验数据.本文对上述相关内容进行了总结,并做了相应分析和讨论.

English Abstract

参考文献 (67)

目录

    /

    返回文章
    返回