搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

幅相同调的吸波-对消雷达散射截面减缩超表面设计

袁方 毛瑞棋 高冕 郑月军 陈强 付云起

引用本文:
Citation:

幅相同调的吸波-对消雷达散射截面减缩超表面设计

袁方, 毛瑞棋, 高冕, 郑月军, 陈强, 付云起

Absorption and cancellation radar cross-section reduction metasurface design based on phase- and amplitude-control

Yuan Fang, Mao Rui-Qi, Gao Mian, Zheng Yue-Jun, Chen Qiang, Fu Yun-Qi
PDF
HTML
导出引用
  • 更宽的工作频带和更低的雷达散射截面(radar cross section, RCS)一直是低可探测领域研究的热点, 然而这两者往往难以兼顾. 鉴于此, 本文提出了一种幅相同调的吸波-对消RCS减缩超表面, 通过在宽带范围内同时设计两个单元的反射相位和反射幅度, 使目标RCS在空间域和能量域分别获得10 dB以上减缩, 从而通过叠加获得20 dB以上的宽带RCS减缩. 仿真和实验结果表明, 在两种极化下, 幅相同调的吸波-对消RCS减缩超表面可以在6.10—12.15 GHz频带范围内获得20 dB以上的RCS减缩效果, 同时10 dB减缩带宽为4.3—14.2 GHz. 所设计的超表面具有减缩幅度大、减缩频带宽、质量轻、单层结构、极化稳定性好、柔性易共形等优点, 有望为低可探测材料研制以及低可探测装备性能提升提供新的技术途径.
    Wider band and deeper radar cross section (RCS) reduction by lower profile is always a very noticeable subject in stealth material researches. Most of researchers have designed and measured the RCS reduction bandwidth with 10 dB standard, that is, the return energy is reduced by 90%. In this paper we present a dual-mechanism method to design a single-layer absorptive metasurface with wideband 20-dB RCS reduction by simultaneously combining the absorption mechanism and the phase cancellation mechanism. Firstly, the impedance condition for 20-dB RCS reduction is theoretically analyzed considering both the absorption and the phase cancellation based on the two unit cells, and the relationship between the surface impedance and the reflection phase/amplitude is revealed. According to these analyses, two unit cells with absorption performance and different reflection phases are designed and utilized to realize the absorptive metasurface. Then, we simulate the plane case and the cylinder case with the designed flexible metasurface and compare them with the counterparts with equal-sized metal. Finally, the sample is fabricated and characterized experimentally to verify the simulated results. Both numerical and experimental results show that the 7-mm-thick single-layer absorptive metasurface features a wideband 20-dB RCS within 6.10–12.15 GHz (66%). Our designed metasurface features wideband, 20-dB reduction, polarization insensitivity, light weight and flexible, promising great potential in real-world low-scattering stealth applications.
      通信作者: 袁方, 13379260913@163.com ; 付云起, yunqifu@nudt.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61801485, 61901492, 61901493)资助的课题.
      Corresponding author: Yuan Fang, 13379260913@163.com ; Fu Yun-Qi, yunqifu@nudt.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61801485, 61901492, 61901493).
    [1]

    Fan J, Cheng Y 2020 J. Phys. D:Appl. Phys. 53 025109Google Scholar

    [2]

    Fan J, Cheng Y, He B 2021 J. Phys. D:Appl. Phys. 54 115101Google Scholar

    [3]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, De M P 2007 IEEE Trans. Antenn. Propag. 55 3630Google Scholar

    [4]

    Iriarte G J C, Pereda A T, De F J L M, Ederra I 2013 IEEE Trans. Antenn. Propag. 61 6136Google Scholar

    [5]

    Li Y, Zhang J, Qu S, Wang J, Chen H, Zhuo X, Zhang A 2014 Appl. Phys. Lett. 104 221110Google Scholar

    [6]

    Sang D, Chen Q, Ding L, Guo M, Fu Y 2019 IEEE Trans. Antenn. Propag. 67 2604Google Scholar

    [7]

    Yuan F, Xu H, Jia X, Wang G, Fu Y 2020 IEEE Trans. Antenn. Propag. 68 2463Google Scholar

    [8]

    Xu H, Ma S, Ling X, Zhang X, Tang S, Cai T, Sun S, He Q, Zhou L 2018 ACS Photonics 5 1691Google Scholar

    [9]

    Al-Nuaimi M, Wei H, Whittow W G 2020 IEEE Antenn. Wirel. Pr. 19 1048Google Scholar

    [10]

    Yuan F, Wang G, Xu H, Cai T, Zou X, Pang Z 2017 IEEE Antenn. Wirel. Pr. 16 3188Google Scholar

    [11]

    Yang J, Li Y, Cheng Y, Chen F, Luo H, Wang X, Gong R 2020 J. Appl. Phys. 127 235304Google Scholar

    [12]

    Yoo M, Lim S 2014 IEEE Trans. Antenn. Propag. 62 2652Google Scholar

    [13]

    Shen Y, Pang Y, Wang J, Ma H, Pei Z, Qu S 2015 J. Phys. D:Appl. Phys. 48 445008Google Scholar

    [14]

    Begaud X, Lepage A, Varault S, Soiron M, Barka A 2018 Materials 11 2045Google Scholar

    [15]

    Liu X, Lan C, Bi K, Li B, Zhao Q, Zhou J 2016 Appl. Phys. Lett. 109 062902Google Scholar

    [16]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [17]

    Marin P, Cortina D, Hernando A 2008 IEEE Trans. Magn. 44 3934Google Scholar

    [18]

    刘祥萱, 陈鑫, 王煊军, 刘渊 2013 表面技术 42 104

    Liu X X, Chen X, Wang X J, Liu Y 2013 Surf. Technol. 42 104

    [19]

    Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104Google Scholar

    [20]

    Chen X, Grzegorczyk T M, Wu B I, Pacheco J J, Kong J A 2004 Phys. Rev. E 70 016608Google Scholar

    [21]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617Google Scholar

    [22]

    Cheng Y, Chen F, Luo H 2021 Nanoscale Res. Lett. 16 12Google Scholar

    [23]

    Cheng Y, Liu J, Chen F, Luo H, Li X 2021 Phys. Lett. A 402 127345Google Scholar

    [24]

    Zhuang Y, Wang G, Liang J G, Zhang Q 2017 IEEE Antenn. Wirel. Pr. 16 2606Google Scholar

    [25]

    Ji C, Huang C, Zhang X, Yang J, Song J, Luo X 2019 Opt. Express 27 23368Google Scholar

    [26]

    Zhou L, Shen Z 2020 IEEE Antenn. Wirel. Pr. 19 1201Google Scholar

    [27]

    Leung S, Liang C P, Tao X F, Li F F, Poo Y, Wu R X 2021 Opt. Express 29 33536Google Scholar

    [28]

    Zhuang Y, Wang G, Liang J G, Cai T, Guo W L, Zhang Q 2017 J. Phys. D: Appl. Phys. 50 465102Google Scholar

    [29]

    Chen W, Balanis C A, Birtcher C R, Modi A Y 2018 IEEE Antenn. Wirel. Pr. 17 343Google Scholar

    [30]

    Malhat H A, Zainud-Deen S H, Shabayek N A 2020 Plasmonics 15 1025Google Scholar

  • 图 1  幅相同调的吸波-对消RCS减缩超表面工作原理示意图

    Fig. 1.  Schematic diagram of the working principle of the absorption-cancellation RCS reduction metasurface with the phase- and amplitude-control.

    图 2  全反射单元等效的终端短路的二端口网络

    Fig. 2.  Equivalent transmission line model of the reflected unit cell.

    图 3  不同频率处反射相位$ \varphi$和反射幅度$ A$与上层拓扑结构阻抗RX之间的关系 (a) 8 GHz; (b) 10 GHz; (c) 12 GHz

    Fig. 3.  The relationship among the reflection phase $ \varphi$, the reflection amplitude $ A$, the impedance of the upper-layer topology R and X at different frequencies: (a) 8 GHz; (b) 10 GHz; (c) 12 GHz.

    图 4  当单元A和B均没有吸收时, RCS减缩和单元比例α以及相位差$ {\varphi }_{\mathrm{d}} $之间的关系

    Fig. 4.  The relationship among the RCS reduction, the parameter α and the phase difference $ {\varphi }_{\mathrm{d}} $, as neither unit A nor B having absorption.

    图 5  当单元A和B均有10 dB吸收时, RCS减缩和单元比例α以及相位差$ {\varphi }_{\mathrm{d}} $之间的关系

    Fig. 5.  The relationship among the RCS reduction, the parameter α and the phase difference $ {\varphi }_{\mathrm{d}} $with a 10 dB absorption of both units A and B .

    图 6  (a) 复阻抗域上不同频率处|S11|= –10 dB 的椭圆曲线; (b) 满足10 dB 吸收的阻抗实部R的取值范围; (c) 满足10 dB 吸收的阻抗虚部X 的取值范围

    Fig. 6.  (a) The elliptic curves of |S11|= –10 dB at different frequencies in the complex impedance domain; (b) the value range of the impedance real part R that meets the 10 dB absorption; (c) the value range of the impedance imaginary part X that meets the 10 dB absorption.

    图 7  阻抗变化曲线图 (a) W = 4.1 mm时, 改变方阻值; (b) 方阻值为60 Ω/sq时, 改变W

    Fig. 7.  The impedance curves: (a) W = 4.1 mm, changing the square resistances; (b) the square resistance being 60 Ω/sq, changing W.

    图 8  (a) 单元A结构示意图; (b) 单元B结构示意图; (c) 单元A和B的反射曲线图; (d) 单元A和B的相位差曲线图

    Fig. 8.  (a) Schematic of the unit A; (b) schematic of the unit B; (c) the reflection amplitude curves of units A and B; (d) the phase difference between unit A and unit B.

    图 9  (a) 由单元A和B组成的吸波-对消超表面示意图; (b) 该超表面与同尺寸金属平板相比的RCS减缩曲线图

    Fig. 9.  (a) The schematic diagram of the absorption-cancellation metasurface composed of units A and B; (b) simulated RCS reduction curves of designed metasurface compared to the metal plate of the same size.

    图 10  在特定频率10 GHz处仿真远场图 (a) CST仿真远场3D图; (b) Matlab理论计算远场3D图; (c) CST仿真远场2D图; (d) Matlab理论计算远场2D图

    Fig. 10.  Simulated far-field pattern at a special frequency of 10 GHz: (a) 3D far-field pattern of CST simulated; (b) 3D far-field pattern of Matlab; (c) 2D pattern of CST simulated; (d) 2D pattern of Matlab.

    图 11  超表面和同尺寸金属平板远场3D仿真对比图

    Fig. 11.  Comparison of 3D far-field patterns of metasurface and metal plate of the same size.

    图 12  吸波-对消超表面作为蒙皮在圆柱上仿真所得的RCS减缩曲线图

    Fig. 12.  The RCS reduction curves of the absorption-cancellation metasurface loaded on metal cylinder.

    图 13  加载超表面蒙皮的圆柱和同尺寸金属3D远场仿真结果对比图

    Fig. 13.  The compared 3D far-field patterns of metasurface loaded on metal cylinder and equal-sized metal cylinder.

    图 14  (a) 拱形架暗室测试环境; (b) 待测超表面样品; (c) 柔性超表面样品称重; (d) 仿真结果与测试结果对比曲线

    Fig. 14.  (a) Test environment of arched rack; (b) sample of metasurface to be tested; (c) the weight of flexible metasurface sample; (d) simulated and tested curves.

    表 1  相关文献研究成果比较

    Table 1.  Comparison of related research results.

    文献设计结构层数10 dB减缩带宽/GHz20 dB减缩带宽/GHz
    [24]集总电阻+PM13.9—4.0; 7.7—19.0 (双频)个别窄带
    [25]PM+FSS213.0—31.5 (83%)个别窄带
    [26]PM+FSS+吸波结构31.85—19.20 (164%)个别窄带
    [27]三维磁性材料13.4—18.0 (136%)未实现20 dB以上
    本文单层图案化PET薄膜14.3—14.2 (107%)6.10—12.15 (66%)
    下载: 导出CSV

    表 2  共形圆柱RCS减缩文献研究成果比较

    Table 2.  Comparison of related research results for cylinder RCS reduction.

    文献工作机制10 dB减缩带宽/GHz5 dB减缩带宽/GHz
    [28]散射8.5—10.7 (23%)7. 6—10.8
    [29]对消个别窄带7.0—9.1
    [30]对消个别窄带9.6—10.8
    本文吸波-对消4—12 (100%)
    下载: 导出CSV
  • [1]

    Fan J, Cheng Y 2020 J. Phys. D:Appl. Phys. 53 025109Google Scholar

    [2]

    Fan J, Cheng Y, He B 2021 J. Phys. D:Appl. Phys. 54 115101Google Scholar

    [3]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, De M P 2007 IEEE Trans. Antenn. Propag. 55 3630Google Scholar

    [4]

    Iriarte G J C, Pereda A T, De F J L M, Ederra I 2013 IEEE Trans. Antenn. Propag. 61 6136Google Scholar

    [5]

    Li Y, Zhang J, Qu S, Wang J, Chen H, Zhuo X, Zhang A 2014 Appl. Phys. Lett. 104 221110Google Scholar

    [6]

    Sang D, Chen Q, Ding L, Guo M, Fu Y 2019 IEEE Trans. Antenn. Propag. 67 2604Google Scholar

    [7]

    Yuan F, Xu H, Jia X, Wang G, Fu Y 2020 IEEE Trans. Antenn. Propag. 68 2463Google Scholar

    [8]

    Xu H, Ma S, Ling X, Zhang X, Tang S, Cai T, Sun S, He Q, Zhou L 2018 ACS Photonics 5 1691Google Scholar

    [9]

    Al-Nuaimi M, Wei H, Whittow W G 2020 IEEE Antenn. Wirel. Pr. 19 1048Google Scholar

    [10]

    Yuan F, Wang G, Xu H, Cai T, Zou X, Pang Z 2017 IEEE Antenn. Wirel. Pr. 16 3188Google Scholar

    [11]

    Yang J, Li Y, Cheng Y, Chen F, Luo H, Wang X, Gong R 2020 J. Appl. Phys. 127 235304Google Scholar

    [12]

    Yoo M, Lim S 2014 IEEE Trans. Antenn. Propag. 62 2652Google Scholar

    [13]

    Shen Y, Pang Y, Wang J, Ma H, Pei Z, Qu S 2015 J. Phys. D:Appl. Phys. 48 445008Google Scholar

    [14]

    Begaud X, Lepage A, Varault S, Soiron M, Barka A 2018 Materials 11 2045Google Scholar

    [15]

    Liu X, Lan C, Bi K, Li B, Zhao Q, Zhou J 2016 Appl. Phys. Lett. 109 062902Google Scholar

    [16]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [17]

    Marin P, Cortina D, Hernando A 2008 IEEE Trans. Magn. 44 3934Google Scholar

    [18]

    刘祥萱, 陈鑫, 王煊军, 刘渊 2013 表面技术 42 104

    Liu X X, Chen X, Wang X J, Liu Y 2013 Surf. Technol. 42 104

    [19]

    Smith D R, Schultz S, Markoš P, Soukoulis C M 2002 Phys. Rev. B 65 195104Google Scholar

    [20]

    Chen X, Grzegorczyk T M, Wu B I, Pacheco J J, Kong J A 2004 Phys. Rev. E 70 016608Google Scholar

    [21]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617Google Scholar

    [22]

    Cheng Y, Chen F, Luo H 2021 Nanoscale Res. Lett. 16 12Google Scholar

    [23]

    Cheng Y, Liu J, Chen F, Luo H, Li X 2021 Phys. Lett. A 402 127345Google Scholar

    [24]

    Zhuang Y, Wang G, Liang J G, Zhang Q 2017 IEEE Antenn. Wirel. Pr. 16 2606Google Scholar

    [25]

    Ji C, Huang C, Zhang X, Yang J, Song J, Luo X 2019 Opt. Express 27 23368Google Scholar

    [26]

    Zhou L, Shen Z 2020 IEEE Antenn. Wirel. Pr. 19 1201Google Scholar

    [27]

    Leung S, Liang C P, Tao X F, Li F F, Poo Y, Wu R X 2021 Opt. Express 29 33536Google Scholar

    [28]

    Zhuang Y, Wang G, Liang J G, Cai T, Guo W L, Zhang Q 2017 J. Phys. D: Appl. Phys. 50 465102Google Scholar

    [29]

    Chen W, Balanis C A, Birtcher C R, Modi A Y 2018 IEEE Antenn. Wirel. Pr. 17 343Google Scholar

    [30]

    Malhat H A, Zainud-Deen S H, Shabayek N A 2020 Plasmonics 15 1025Google Scholar

  • [1] 王彦朝, 许河秀, 王朝辉, 王明照, 王少杰. 电磁超材料吸波体的研究进展. 物理学报, 2020, 69(13): 134101. doi: 10.7498/aps.69.20200355
    [2] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [3] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [4] 惠忆聪, 王春齐, 黄小忠. 基于电阻型频率选择表面的宽带雷达超材料吸波体设计. 物理学报, 2015, 64(21): 218102. doi: 10.7498/aps.64.218102
    [5] 吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 基于十字形结构的相位梯度超表面设计与雷达散射截面缩减验证. 物理学报, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [6] 李文惠, 张介秋, 屈绍波, 袁航盈, 沈杨, 王冬骏, 过勐超. 基于宽带吸波体的微带天线雷达散射截面缩减设计. 物理学报, 2015, 64(8): 084101. doi: 10.7498/aps.64.084101
    [7] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [8] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [9] 李文强, 高军, 曹祥玉, 杨群, 赵一, 张昭, 张呈辉. 一种具有吸波和相位相消特性的共享孔径雷达吸波材料. 物理学报, 2014, 63(12): 124101. doi: 10.7498/aps.63.124101
    [10] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [11] 鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐. 宽带雷达散射截面减缩人工磁导体复合结构. 物理学报, 2013, 62(3): 034206. doi: 10.7498/aps.62.034206
    [12] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [13] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [14] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [15] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [16] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢. 人工磁导体正交布阵的宽带低雷达截面反射屏. 物理学报, 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [17] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜. 基于电阻型频率选择表面的低频宽带超材料吸波体的设计. 物理学报, 2012, 61(13): 134102. doi: 10.7498/aps.61.134102
    [18] 周航, 屈绍波, 彭卫东, 王甲富, 马华, 张东伟, 张介秋, 柏鹏, 徐卓. 一种加载电阻膜吸波材料的新型频率选择表面. 物理学报, 2012, 61(10): 104201. doi: 10.7498/aps.61.104201
    [19] 顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东. 一种极化不敏感和双面吸波的手性超材料吸波体. 物理学报, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [20] 顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍. 准全向平板超材料吸波体的设计. 物理学报, 2011, 60(3): 037801. doi: 10.7498/aps.60.037801
计量
  • 文章访问数:  3871
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-25
  • 修回日期:  2021-12-14
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回