搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于射电观测的日冕物质抛射驱动激波的统计特征研究

周坤论 丁留贯 王智伟 封莉

引用本文:
Citation:

基于射电观测的日冕物质抛射驱动激波的统计特征研究

周坤论, 丁留贯, 王智伟, 封莉

Statistical analysis of shock properties driven by coronal mass ejections based on observations of type II radio bursts

Zhou Kun-Lun, Ding Liu-Guan, Wang Zhi-Wei, Feng Li
PDF
HTML
导出引用
  • 本文基于Wind/WAVES和STEREO/SWAVES等多卫星射电观测资料, 选择第24太阳活动周2007年1月至2015年12月期间77个II型射电暴样本事件, 拟合其激波速度, 分析了激波参数与日冕物质抛射(CME)、耀斑和太阳高能粒子(SEP)等参数的相关关系及变化规律, 并探讨了射电增强对这些关系的影响. 研究结果显示: 1)在II型射电暴十米百米(DH)波段范围起始时刻, 激波高度比CME前沿高度略高一点, 即激波脱体距离(standoff distance)约0.4 Rs, 且这个高度随CME向外传播而增大. 在低日冕和高日冕, 激波脱体距离随CME速度的变化呈现明显相反的规律; 在低高度上, CME速度快, 激波脱体距离大, 而在高高度上, CME速度慢, 脱体距离大. 2)射电增强伴随事件的CME速度明显大于无射电增强事件; 射电增强伴随事件的激波速度与CME质量、动能的相关性明显好于无射电增强伴随事件. 3)有射电增强伴随的II型射电暴DH波段持续时间与CME速度、质量、动能之间无明显相关性, 而无射电增强事件的DH波段持续时间与这三个量之间呈正相关. 4)产生SEP事件的激波速度明显大于未产生SEP事件的激波速度; 有射电增强伴随的II型射电暴(激波)事件产生SEP事件的比例略高于无射电增强事件(73.5% > 67.4%), 但射电增强事件产生大SEP事件(large SEP event)的比例(67.6%)明显高于无射电增强事件(37.2%). 进一步表明, II型射电暴射电增强可作为其驱动源(激波)大概率产生大SEP事件的辨别信号之一.
    In this paper, we investigate 77 type-II radio burst events' data observed by Wind/WAVES and STEREO/SWAVES from January 2007 to December 2015. By fitting the frequency-time profile to obtain the corresponding shock velocity, we study the relationship between the parameters of shock and those of coronal mass ejection (CME), solar flare and the associated SEP events, and explore the influences of type II radio enhancement on these relationships. Our findings are as follows. 1) In general, at the onset time of type II radio bursts within deca-hectometric (DH) waveband, the shock front is about 0.4Rs ahead of the leading edge of CME (shock standoff distance), and this distance increases as the CME propagates outward. In the low and high corona, the relationship between shock standoff distance and CME speed indicates a significant difference; the shock standoff distance is correlated with the CME speed positively at the low altitude, but negatively at high altitude. 2) The CME speed of the events with radio enhancement is significantly larger than that with no radio enhancement; and comparing with the events with no radio enhancement, the correlation coefficient between the shock speed and the mass and kinetic energy of the associated CME is significantly high for the events with radio enhancement. 3) There is no correlation between the duration of type II radio burst in DH waveband with enhancement and the speed, mass and kinetic energy of CME. However, it presents a positive correlation for the events with no radio enhancement. 4) Usually the speed of shock that can produce SEP event is obviously higher than that with producing no SEP event. The probability of the SEP generated by the events associated with radio enhancement is slightly higher than with no radio enhancement (73.5% > 67.4%), but for the large SEP events, the generation probability (67.6%) associated with radio enhancement is about one-order of magnitude higher than that with no radio enhancement (37.2%). This conclusion indicates that the type II radio enhancement can be used as one of the signatures of the shock or the radio source that more probably produces a large SEP event.
      通信作者: 丁留贯, dlg@nuist.edu.cn
    • 基金项目: 国家自然科学基金天文联合基金(批准号: U1731105)、江苏省基础研究计划面上项目(批准号: BK20171456)、江苏省青蓝工程项目和中国科学院暗物质与空间天文重点实验室开放基金资助的课题.
      Corresponding author: Ding Liu-Guan, dlg@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1731105), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20171456), and the Qing Lan Project of Jiangsu Province for Ding L.G., and the Specialized Research Fund for Key Laboratory of Dark Matter and Space Astronomy, CAS.
    [1]

    Stewart R T, McCabe M K, Koomen M J, Hansen R T, Dulk G A 1974 Sol. Phys. 36 203Google Scholar

    [2]

    Vršnak B, Lulié S 2000 Sol. Phys. 196 181Google Scholar

    [3]

    Vršnak B, Cliver E W 2008 Sol. Phys. 253 215Google Scholar

    [4]

    Hundhausen A J, Holzer T E, Low B C 2012 J. Geophys. Res-Space. 92 11173

    [5]

    Kahler S W 1982 Astrophys. J. 261 710Google Scholar

    [6]

    Cane H V, Erickson W C, Prestage N P 2002 J. Geophys. Res-Space. 107 1315Google Scholar

    [7]

    Su W, Cheng X, Ding M D, Chen P F, Ning Z J, Ji H S 2016 Astrophys. J. 830 70Google Scholar

    [8]

    Wild J P, McCready L L 1950 Aust. J. Chem. 3 387Google Scholar

    [9]

    Cane H V, Stone R G, Fainberg J 1981 Geophys. Res. Lett. 8 1285Google Scholar

    [10]

    Gopalswamy N, Kaiser M L, Lepping R P, Kahler S W, Ogilvie K, Berdichevsky D, Kondo T, Isobe T, Akioka M 1998 J. Geophys. Res-Space. l 03 307

    [11]

    Kahler S W 2007 Space. Sci. Rev. 129 359Google Scholar

    [12]

    Reiner M J, Kaiser M L, Bougeret J L 2001 J. Geophys. Res. 106 12

    [13]

    Maia D, Pick M, Vourlidas A, Howard R A 2000 Astrophys. J. 528 49Google Scholar

    [14]

    Bain H M, Krucker Säm, Glesener L, Lin R P 2012 Astrophys. J. 750 44Google Scholar

    [15]

    Reiner M J, Vourlidas A, Cyr O C S, Burkepile J T, Howard R A, Kaiser M L, Prestage N P, Bougeret J L 2003 Astrophys. J. 590 533Google Scholar

    [16]

    Cho K S, Lee J, Moon Y J, Dryer M, Bong S C, Kim Y H, Park Y D 2007 Astron. Astrophys. 461 1121Google Scholar

    [17]

    Cho K S, Bong S C, Kim Y H, Moon Y J, Dryer M, Shanmugaraju A, Lee J, Park Y D 2008 Astron. Astrophys. 491 873Google Scholar

    [18]

    Feng S W, Chen Y, Kong X L, Li G, Song H Q, Feng X S, Ying Liu 2012 Astrophys. J. 753 21Google Scholar

    [19]

    Kong X L, Chen Y, Li G, Feng S W, Song H Q, Guo F, Jiao F R 2012 Astrophys. J. 750 158Google Scholar

    [20]

    Gopalswamy N, Yashiro S, Kaiser M L, Howard R A, Bougeret J L 2001 Astrophys. J. 548 91Google Scholar

    [21]

    Ding L G, Wang Z W, Feng L, Li G, Jiang Y 2019 Res. Astron. Astrophys. 19 1Google Scholar

    [22]

    Al-Hamadani F, Pohjolainen S, Valtonen E 2017 Sol. Phys. 292 127Google Scholar

    [23]

    Kahler S W 2001 J. Geophys. Res. 106 10

    [24]

    Shen C L, Wang Y M, Ye P Z, Zhao X P, Gui B, Wang S 2007 Astrophys. J. 670 849Google Scholar

    [25]

    Gopalswamy N, Aguilar-Rodriguez E, Yashiro S, Nunes S, Kaiser M L, Howard R A 2005 J. Geophys. Res. 110 12

    [26]

    Winter L M, Ledbetter K 2015 Astrophys. J. 809 105Google Scholar

    [27]

    Marque C, Posner A, Klein K L 2006 Astrophys. J. 642 1222Google Scholar

    [28]

    Müller-Mellin R, Kunow H, Fleißner V, Pehlke E, Rode E, Röschmann N, Scharmberg C, Sierks H, Rusznyak P, Mckenna-Lawlor S, Elendt I, Sequeiros J, Meziat D, Sanchez S, Medina J, Peral L D, Witte M, Marsden R, Henrion J 1995 Sol. Phys. 162 483Google Scholar

    [29]

    Von Rosenvinge T T, Reames D V, Baker R, Hawk J, Nolan J T, Ryan L, Shuman S, Wortman K A, Mewaldt R A, Cummings A C, Cook W R, Labrador A W, Leske R A, Wiedenbeck M E 2008 Space. Sci. Rev. 136 391Google Scholar

    [30]

    王智伟, 丁留贯, 周坤论, 乐贵明 2018 地球物理学报 61 3515Google Scholar

    Wang Z W, Ding L G, Zhou K L, Yue G M 2018 Chin. J. Geophys. 61 3515Google Scholar

    [31]

    Vršnak B, Magdalenić J, Zlobec P 2004 Astron. Astrophys. 413 753Google Scholar

    [32]

    Saito K, Poland A I, Munro R H 1977 Sol. Phys. 55 121Google Scholar

    [33]

    Gopalswamy N, Yashiro S 2011 Astrophys. J. 736 17Google Scholar

    [34]

    Mäkelä P, Gopalswamy N, Akiyama S, Xie H, Yashiro S, Recently M 2015 Astrophys. J. 806 13Google Scholar

    [35]

    Kocharov L, Pohjolainen S, Mishev A, Reiner M J, Lee J, Laitinen T, Didkovsky L V, Pizzo V J, Kim R, Klassen A, Karlicky M, Cho K S, Gary D E, Usoskin I, Valtonen E, Vainio R 2017 Astrophys. J. 839 79Google Scholar

    [36]

    Mittal N, Verma V K 2017 New. Astron. 50 60Google Scholar

    [37]

    Mujiber Rahman A, Shanmugaraju A, Umapathy S, Moon Y J 2013 J. Atmos. Sol-Terr. Phys 105 106

  • 图 1  典型II型射电暴频谱图及所采用不同密度模型拟合激波高度-时间变化图

    Fig. 1.  Spectrum diagram of a typical type-II radio burst and the linear fitting results of spectrum with different coronal density model

    图 2  (a) 81个候选事件拟合激波速度与CME速度之间的关系. 蓝色圈代表激波速度与CME速度相符事件, 红色三角代表拟合激波速度远小于CME速度事件, 黑色实线是所有事件的线性拟合, 蓝色实线是所有相符事件的线性拟合; (b)拟合激波速度与CME速度之差的统计直方图

    Fig. 2.  (a) Scatter plot of fitting shock speed and CME speed for all 81 candidate events. The blue circle represents the shock speed coincides with the CME speed event, the red triangle represents the events that the fitting shock speed is much smaller than the CME speed, the black solid line is the linear fit of all events, and the blue solid line is the linear fit of all 77 coincident or normal events. (b) Distribution of the speed difference between shock speed and CME speed.

    图 3  所有候选事件DH II型射电暴起始时刻激波高度与CME高度之间的关系. (a)蓝色圈是正常事件, 红色三角是异常事件, 黑色实线是所有事件的拟合线, 蓝色实线是正常事件起始高度的拟合线, 黑色虚线斜率为1. (b) DH II型射电暴起始时刻激波高度与CME高度差的直方图, 蓝色条为正常事件, 红色条为异常事件

    Fig. 3.  Scatter plot of shock height and CME height at the onset of type IIs radio burst for all 81 candidate events. (a) The blue circle is a normal event, the red triangle is an abnormal event, the black solid line is the fitted line for all events, the blue solid line is the fitted line for the normal event start height, and the black dotted line slope is 1. (b) histogram of the difference between the shock height and the CME height at the start of the type IIs radio burst. The blue bar is a normal event and the red bar is an abnormal event.

    图 4  有无射电增强对激波速度与CME速度关系的影响

    Fig. 4.  Difference between groups of radio enhancement and of no radio enhancement on shock speed and CME speed for normal events

    图 5  DH II型射电暴起始时刻(a)激波高度和(b) CME前沿高度的统计直方图. 蓝色为有射电增强的事件, 红色为无射电增强的事件

    Fig. 5.  Statistical histogram of the shock height and the CME leading edge height at the start time of DH type II radio bursts for normal events. Blue is an event with radio enhancement, and red is an event with no radio enhancement.

    图 6  激波脱体距离随CME高度变化统计图

    Fig. 6.  The histogram of the standoff distances as a function of CME heights

    图 7  (a)激波速度与CME质量的相关性, (b)激波速度与CME动能的关系. 蓝色圈为有射电增强的事件, 红色圈为无射电增强的事件, 黑色虚线为所有事件的拟合线, 蓝色虚线为有射电增强事件的线性拟合, 红色虚线为无射电增强事件的线性拟合

    Fig. 7.  Scatter plot of shock speed and CME mass、kinetic energy for normal events. The blue circle is an event with enhanced radio enhancement, the red circle is an event with no radio enhancement, the black dotted line is the fitted line for all events, the blue dashed line is a linear fit result for radio-enhanced events, and the red dashed line is a linear fit result for no radio-enhanced events.

    图 8  激波速度与耀斑等级的相关性, 蓝色圈为有射电增强的事件, 红色圈为无射电增强的事件, 黑色虚线为所有事件的线性拟合, 蓝色虚线为有射电增强事件的线性拟合, 红色虚线为无射电增强的线性拟合.

    Fig. 8.  Scatter plot between shock speed and flare class for normal events, blue circle for radio-enhanced events, red circle for no radio-enhanced events, black dashed line for linear fitting of all events, and blue dashed line is a linear fit for radio-enhanced events, the red dashed line is a linear fit for no radio enhancement events.

    图 9  DH II型射电暴持续时间与CME速度(a)、质量(b)和动能(c)的相关性, 蓝色圈为有射电增强的事件, 红色圈为无射电增强的事件. 黑色虚线为所有事件的线性拟合, 蓝色虚线为有射电增强事件的线性拟合, 红色虚线为无射电增强的线性拟合

    Fig. 9.  Scatter plot of DH type II radio burst duration and CME speed(a), CME mass(b) and CME kinetic energy(c) for normal events. The blue circle is an event with radio enhancement, and the red circle is an event with no radio enhancement. The black dashed line is a linear fit for all events, the blue dashed line is a linear fit for radio-enhanced events, and the red dashed line is a linear fit for no radio-enhancement events.

    图 10  (a)有射电增强和(b)无射电增强的事件中大SEP、小SEP和无SEP事件所占百分比. 蓝、绿、红分别代表大SEP、小SEP和无SEP事件

    Fig. 10.  Percentage of large SEP, small SEP, and no SEP events with(a) or without(b) radio-enhancement for normal events. Blue, green, and red respectively represent large SEP, small SEP, and no SEP events

    图 11  (a) SEP事件峰值与激波速度的相关关系, 黑色虚线为所有事件的线性拟合, 蓝色虚线为有射电增强事件的线性拟合, 红色虚线为无射电增强的线性拟合. (b)有无SEP事件的激波速度的统计直方图

    Fig. 11.  (a) Scatter plot between SEP event peak and shock speed for normal events. black dashed line is a linear fit for all events, blue dashed line is a linear fit for radio enhanced events, and red dashed line is a linear fit for no radio enhancement. (b) Statistical histogram of shock speed associated with or without SEP events for normal events

  • [1]

    Stewart R T, McCabe M K, Koomen M J, Hansen R T, Dulk G A 1974 Sol. Phys. 36 203Google Scholar

    [2]

    Vršnak B, Lulié S 2000 Sol. Phys. 196 181Google Scholar

    [3]

    Vršnak B, Cliver E W 2008 Sol. Phys. 253 215Google Scholar

    [4]

    Hundhausen A J, Holzer T E, Low B C 2012 J. Geophys. Res-Space. 92 11173

    [5]

    Kahler S W 1982 Astrophys. J. 261 710Google Scholar

    [6]

    Cane H V, Erickson W C, Prestage N P 2002 J. Geophys. Res-Space. 107 1315Google Scholar

    [7]

    Su W, Cheng X, Ding M D, Chen P F, Ning Z J, Ji H S 2016 Astrophys. J. 830 70Google Scholar

    [8]

    Wild J P, McCready L L 1950 Aust. J. Chem. 3 387Google Scholar

    [9]

    Cane H V, Stone R G, Fainberg J 1981 Geophys. Res. Lett. 8 1285Google Scholar

    [10]

    Gopalswamy N, Kaiser M L, Lepping R P, Kahler S W, Ogilvie K, Berdichevsky D, Kondo T, Isobe T, Akioka M 1998 J. Geophys. Res-Space. l 03 307

    [11]

    Kahler S W 2007 Space. Sci. Rev. 129 359Google Scholar

    [12]

    Reiner M J, Kaiser M L, Bougeret J L 2001 J. Geophys. Res. 106 12

    [13]

    Maia D, Pick M, Vourlidas A, Howard R A 2000 Astrophys. J. 528 49Google Scholar

    [14]

    Bain H M, Krucker Säm, Glesener L, Lin R P 2012 Astrophys. J. 750 44Google Scholar

    [15]

    Reiner M J, Vourlidas A, Cyr O C S, Burkepile J T, Howard R A, Kaiser M L, Prestage N P, Bougeret J L 2003 Astrophys. J. 590 533Google Scholar

    [16]

    Cho K S, Lee J, Moon Y J, Dryer M, Bong S C, Kim Y H, Park Y D 2007 Astron. Astrophys. 461 1121Google Scholar

    [17]

    Cho K S, Bong S C, Kim Y H, Moon Y J, Dryer M, Shanmugaraju A, Lee J, Park Y D 2008 Astron. Astrophys. 491 873Google Scholar

    [18]

    Feng S W, Chen Y, Kong X L, Li G, Song H Q, Feng X S, Ying Liu 2012 Astrophys. J. 753 21Google Scholar

    [19]

    Kong X L, Chen Y, Li G, Feng S W, Song H Q, Guo F, Jiao F R 2012 Astrophys. J. 750 158Google Scholar

    [20]

    Gopalswamy N, Yashiro S, Kaiser M L, Howard R A, Bougeret J L 2001 Astrophys. J. 548 91Google Scholar

    [21]

    Ding L G, Wang Z W, Feng L, Li G, Jiang Y 2019 Res. Astron. Astrophys. 19 1Google Scholar

    [22]

    Al-Hamadani F, Pohjolainen S, Valtonen E 2017 Sol. Phys. 292 127Google Scholar

    [23]

    Kahler S W 2001 J. Geophys. Res. 106 10

    [24]

    Shen C L, Wang Y M, Ye P Z, Zhao X P, Gui B, Wang S 2007 Astrophys. J. 670 849Google Scholar

    [25]

    Gopalswamy N, Aguilar-Rodriguez E, Yashiro S, Nunes S, Kaiser M L, Howard R A 2005 J. Geophys. Res. 110 12

    [26]

    Winter L M, Ledbetter K 2015 Astrophys. J. 809 105Google Scholar

    [27]

    Marque C, Posner A, Klein K L 2006 Astrophys. J. 642 1222Google Scholar

    [28]

    Müller-Mellin R, Kunow H, Fleißner V, Pehlke E, Rode E, Röschmann N, Scharmberg C, Sierks H, Rusznyak P, Mckenna-Lawlor S, Elendt I, Sequeiros J, Meziat D, Sanchez S, Medina J, Peral L D, Witte M, Marsden R, Henrion J 1995 Sol. Phys. 162 483Google Scholar

    [29]

    Von Rosenvinge T T, Reames D V, Baker R, Hawk J, Nolan J T, Ryan L, Shuman S, Wortman K A, Mewaldt R A, Cummings A C, Cook W R, Labrador A W, Leske R A, Wiedenbeck M E 2008 Space. Sci. Rev. 136 391Google Scholar

    [30]

    王智伟, 丁留贯, 周坤论, 乐贵明 2018 地球物理学报 61 3515Google Scholar

    Wang Z W, Ding L G, Zhou K L, Yue G M 2018 Chin. J. Geophys. 61 3515Google Scholar

    [31]

    Vršnak B, Magdalenić J, Zlobec P 2004 Astron. Astrophys. 413 753Google Scholar

    [32]

    Saito K, Poland A I, Munro R H 1977 Sol. Phys. 55 121Google Scholar

    [33]

    Gopalswamy N, Yashiro S 2011 Astrophys. J. 736 17Google Scholar

    [34]

    Mäkelä P, Gopalswamy N, Akiyama S, Xie H, Yashiro S, Recently M 2015 Astrophys. J. 806 13Google Scholar

    [35]

    Kocharov L, Pohjolainen S, Mishev A, Reiner M J, Lee J, Laitinen T, Didkovsky L V, Pizzo V J, Kim R, Klassen A, Karlicky M, Cho K S, Gary D E, Usoskin I, Valtonen E, Vainio R 2017 Astrophys. J. 839 79Google Scholar

    [36]

    Mittal N, Verma V K 2017 New. Astron. 50 60Google Scholar

    [37]

    Mujiber Rahman A, Shanmugaraju A, Umapathy S, Moon Y J 2013 J. Atmos. Sol-Terr. Phys 105 106

  • [1] 严豪, 丁留贯, 封莉, 顾斌. 太阳高能粒子强度与日冕物质抛射及其II型射电暴的关系. 物理学报, 2024, 73(7): 079601. doi: 10.7498/aps.73.20231855
    [2] 朱聪, 丁留贯, 周坤论, 钱天麒. II型射电暴分类及其与太阳高能粒子事件的关系. 物理学报, 2021, 70(9): 099601. doi: 10.7498/aps.70.20201800
    [3] 周坤论, 丁留贯, 钱天麒, 朱聪, 王智伟, 封莉. II型射电暴射电增强与太阳高能粒子事件关系的统计. 物理学报, 2020, 69(16): 169601. doi: 10.7498/aps.69.20200041
    [4] 熊雨薇, 尹奎波, 文一峰, 辛磊, 姚利兵, 朱重阳, 孙立涛. 纳米氧化锡负极材料锂化反应机理的原位透射电镜研究. 物理学报, 2019, 68(15): 158201. doi: 10.7498/aps.68.20190431
    [5] 倪素兰, 顾斌, 韩智伊. 行星际日冕物质抛射引起福布斯下降的一维随机微分模拟. 物理学报, 2017, 66(13): 139601. doi: 10.7498/aps.66.139601
    [6] 牟宗信, 牟晓东, 王春, 贾莉, 董闯. 直流电源耦合高功率脉冲非平衡磁控溅射电离特性. 物理学报, 2011, 60(1): 015204. doi: 10.7498/aps.60.015204
    [7] 汤奇, 孟繁义, 张狂, 吴群, 李乐伟. 法拉第手征介质反射电磁波的极化特性研究. 物理学报, 2011, 60(1): 014206. doi: 10.7498/aps.60.014206
    [8] 陶应龙, 王建国, 牛胜利, 朱金辉, 范如玉. 高空核爆炸瞬发辐射电离效应的数值模拟. 物理学报, 2010, 59(8): 5914-5920. doi: 10.7498/aps.59.5914
    [9] 冯文天, 马新文, 朱小龙, 张少峰, 刘惠萍, 许慎跃, 钱东斌, 李斌, 闫顺成, 张大成, 孟令杰, 张鹏举. 低能He2+入射He原子转移电离实验中出射电子成像研究. 物理学报, 2010, 59(12): 8471-8477. doi: 10.7498/aps.59.8471
    [10] 李为虎, 袁蓉. BL Lac天体的γ射线和射电辐射的统计特性. 物理学报, 2009, 58(9): 6671-6676. doi: 10.7498/aps.58.6671
    [11] 王新庆, 李 良, 褚宁杰, 金红晓, 葛洪良. 纳米碳管阵列场发射电流密度的理论数值优化. 物理学报, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [12] 徐 进, 李福龙, 杨德仁. 直拉硅单晶中原生氧沉淀的透射电镜研究. 物理学报, 2007, 56(7): 4113-4116. doi: 10.7498/aps.56.4113
    [13] 曹士娉, 马新文, A. Dorn, M. Dürr, J. Ullrich. 近阈值下He原子的双电子电离实验中出射电子研究. 物理学报, 2007, 56(11): 6386-6392. doi: 10.7498/aps.56.6386
    [14] 王 晶, 冯学尚. 日冕物质抛射引起地磁扰动的分类预报. 物理学报, 2007, 56(4): 2466-2474. doi: 10.7498/aps.56.2466
    [15] 程 勇, 张 雄, 伍 林, 毛慰明, 尤莉莎. 用离散相关函数方法分析Blazar天体的γ射线和射电辐射的相关性. 物理学报, 2006, 55(2): 988-994. doi: 10.7498/aps.55.988
    [16] 郑国梁, 吴丹丹, 佘卫龙. THz辐射电光探测原理分析新方法. 物理学报, 2005, 54(7): 3063-3068. doi: 10.7498/aps.54.3063
    [17] 朱亚波, 王万录, 廖克俊. 对碳纳米管阵列的场发射电场增强因子以及最佳阵列密度的研究. 物理学报, 2002, 51(10): 2335-2339. doi: 10.7498/aps.51.2335
    [18] 康振川. 用反射电子显微术对金刚石表面的研究. 物理学报, 1983, 32(6): 808-811. doi: 10.7498/aps.32.808
    [19] 程鹏翥, 马晓华, 罗棨光, 杨大宇. 透射电子显微镜样品的电解抛光制备方法. 物理学报, 1981, 30(2): 286-290. doi: 10.7498/aps.30.286
    [20] 郭可信, 林保军. 镍铬合金中不全位错的透射电子显微镜观察. 物理学报, 1980, 29(4): 494-499. doi: 10.7498/aps.29.494
计量
  • 文章访问数:  4925
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-20
  • 修回日期:  2019-04-29
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回