搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外加液滴条件下固体细颗粒声凝并特性

赵豪 吴志豪 胡晓红 凡凤仙 苏明旭

引用本文:
Citation:

外加液滴条件下固体细颗粒声凝并特性

赵豪, 吴志豪, 胡晓红, 凡凤仙, 苏明旭

Acoustic agglomeration characteristics of fine solid particles under effect of additional droplets

Zhao Hao, Wu Zhi-Hao, Hu Xiao-Hong, Fan Feng-Xian, Su Ming-Xu
PDF
HTML
导出引用
  • 外加声场激励下固体细颗粒的声凝并在燃烧污染物超低排放中具有应用潜力, 添加大粒径液滴有望提高细颗粒声凝并效果. 本文从颗粒运动、碰撞、凝并与反弹的动力学过程出发, 基于直接模拟蒙特卡罗方法, 建立气相中液滴与固体颗粒共存的气-液-固三相体系的声凝并模型, 对外加液滴条件下固体细颗粒声凝并的过程和效果开展数值模拟. 将模拟结果与实验相对比, 验证模型可靠性. 在此基础上, 探究外加液滴条件下细颗粒声凝并动力学行为, 考察外加液滴直径和数目浓度对细颗粒声凝并效果的影响规律. 结果表明, 外加液滴条件下, 固体细颗粒迅速与大粒径液滴凝并, 形成液-固混合相颗粒, 细颗粒凝并效率显著提升. 外加液滴直径和数目浓度是影响细颗粒声凝并的重要因素, 随着直径的增大或数目浓度的提高, 细颗粒凝并效率增大, 而增幅趋于减小. 研究结果可为复杂颗粒系统凝并模型的建立提供理论基础, 并可为燃烧源细颗粒超低排放提供方法指导.
    Agglomeration of fine solid particles under the excitation of external acoustic field has potential applications in the field of ultra-low emission of combustion pollutants. It is expected that the performance of particle agglomeration can be improved by adding large sized liquid droplets. According to the dynamic process of acoustic agglomeration, including the particle motion, collision, agglomeration and rebound, a model of acoustic agglomeration for gas-liquid-solid three phase system with coexistence of liquid droplets and solid particles in gas phase is developed by using the direct simulation Monte Carlo (DSMC) method. Using this model, numerical simulations are performed to investigate the process and performance of acoustic agglomeration of fine solid particles under the effect of additional droplets. The numerical results are compared with experimental data, and the proposed model is validated. On this basis, the dynamic behaviors of acoustic agglomeration of fine particles in the case with additional droplets are explored. Furthermore, the influences of the diameter and number concentration of additional droplets on the performance of acoustic agglomeration of fine particles are examined. The results show that rapid agglomeration among the solid fine particles and additional droplets can be achieved by adding droplets into the acoustic field, yielding large sized liquid-solid mixed-phase particles. In this process, the agglomeration efficiency of fine particles increases significantly. It is also found that the diameter and number concentration of additional droplets are important factors that affect the acoustic agglomeration of fine particles. The agglomeration efficiency of fine particles rises, while the magnitude of increase tends to decrease with the droplet diameter and number concentration increasing. The research results can provide both theoretical basis for modeling the agglomeration process of complex particle systems and method guidance for achieving the ultra-low emission of fine particles from combustion sources.
      通信作者: 凡凤仙, fanfengxian@usst.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51976130)和上海市科委科研计划(批准号: 13DZ2260900) 资助的课题.
      Corresponding author: Fan Feng-Xian, fanfengxian@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51976130) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 13DZ2260900).
    [1]

    Zhou D, Luo Z, Jiang J, Chen H, Lu M, Fang M 2016 Powder Technol. 289 52Google Scholar

    [2]

    Shang X P, Ng B F, Wan M P, Xiong J W, Arikrishnan S 2018 Aerosol Sci. Technol. 52 872Google Scholar

    [3]

    Zhang G X, Ma Z F, Shen J, Zhang K, Wang J Q, Chi Z H 2020 J. Hazard. Maters. 382 121089Google Scholar

    [4]

    屈广宁, 凡凤仙, 张斯宏, 苏明旭 2020 物理学报 69 064704Google Scholar

    Qu G N, Fan F X, Zhang S H, Su M X 2020 Acta Phys. Sin. 69 064704Google Scholar

    [5]

    Wu Z H, Fan F X, Yan J P, Chen H T, Hu X H, Su M X 2022 Chem. Eng. Sci. 249 117298Google Scholar

    [6]

    Liu J Z, Zhang G X, Zhou J H, Zhao W D, Cen K F 2009 Powder Technol. 193 20Google Scholar

    [7]

    Fan F X, Zhang M J, Peng Z B, Chen J, Su M X, Moghtaderi B, Doroodchi E 2017 Aerosol Air Qual. Res. 17 1073Google Scholar

    [8]

    Yan J P, Chen L Q, Li Z 2016 Fuel. 165 316Google Scholar

    [9]

    Zhang G X, Zhang L L, Wang J, Hu E 2017 Powder Technol. 317 181Google Scholar

    [10]

    Wang J, Liu J Z, Zhang G X, Zhou J H, Cen K F 2011 Powder Technol. 210 315Google Scholar

    [11]

    Yang N N, Fan F X, Hu X H, Su M X 2022 J. Aerosol Sci. 165 106018Google Scholar

    [12]

    Yan J P, Chen L Q, Lin Q 2017 Powder Technol. 315 106Google Scholar

    [13]

    Chen H, Wang T, Luo Z Y, Zhou D, Lu M S, He M C, Fang M X, Cen K F 2017 Aerosol Air Qual. Res. 17 857Google Scholar

    [14]

    Yan J P, Lin Q, Zhao S H, Chen L Q 2018 Powder Technol. 340 8Google Scholar

    [15]

    Zhang G X, Wang J Q, Chi Z H, Hu E 2018 Chem. Eng. Sci. 187 342Google Scholar

    [16]

    Shang X P, Wan M P, Ng B F, Ding S R 2020 Powder Technol. 362 111Google Scholar

    [17]

    Crowe C T, Schwarzkopf J D, Scommerfeld M, Tsuij Y 2012 Multiphase Flows with Droplets and Particles (2nd Ed.) (New York: CRC Press) pp119–137

    [18]

    Higashitani K, Makino H, Matsusaka S 2020 Powder Technology Handbook (4th Ed.) (New York: CRC Press) p60

    [19]

    Tsuji Y, Tanaka T, Yonemura S 1998 Powder Technol. 95 254Google Scholar

    [20]

    Zhang G X, Liu J Z, Wang J, Zhou J H, Cen K F 2012 Chin. Sci. Bull. 57 2404Google Scholar

    [21]

    Song L 1990 Ph. D. Dissertation (State College: Pennsylvania State University)

    [22]

    Sgrott O L, Sommerfeld M 2019 Can. J. Chem. Eng. 97 511

    [23]

    Ennis B J 1991 Powder Technol. 65 257Google Scholar

    [24]

    He Y X, Zhao H B 2016 Int. J. Multiphase Flow. 83 12Google Scholar

    [25]

    Kleinhans U, Wieland C, Frandsen F J, Spliethoff H 2018 Prog. Energy Combust. Sci. 68 65Google Scholar

  • 图 1  碰撞颗粒对类型 (a) 固体颗粒与固体颗粒; (b) 固体颗粒与液滴; (c) 固体颗粒与混合相颗粒; (d) 液滴与液滴; (e) 液滴与混合相颗粒; (f) 混合相颗粒与混合相颗粒

    Fig. 1.  Types of collision particle pair: (a) Solid particle and solid particle; (b) solid particle and droplet; (c) solid particle and mixed-phase particle; (d) droplet and droplet; (e) droplet and mixed-phase particle; (f) mixed-phase particle and mixed-phase particle.

    图 2  数值模拟流程

    Fig. 2.  Flow chart of numerical simulation.

    图 3  声凝并后粒径分布模拟结果与文献[15]实验的对比

    Fig. 3.  Comparison of simulation results of particle size distribution after acoustic agglomeration with experiments from literature [15].

    图 4  声凝并动力学行为 (a) 粒径分布; (b) 细颗粒凝并效率; (c) 凝并过程快照 (0 ≤ x ≤ 0.25λ, 液相放大40倍, 固相放大120倍)

    Fig. 4.  Dynamic behavior of acoustic agglomeration: (a) Particle size distribution; (b) agglomeration efficiency of fine particles; (c) snapshots of agglomeration process (0 ≤ x ≤ 0.25λ, liquid phase at 40× magnification and solid phase at 120× magnification).

    图 5  外加液滴直径对声凝并效果的影响 (a) 粒径分布; (b) 细颗粒凝并效率

    Fig. 5.  Influence of additional droplet diameter on performance of acoustic agglomeration: (a) Particle size distribution; (b) agglomeration efficiency of fine particles.

    图 6  外加液滴数目浓度对声凝并效果的影响 (a) 粒径分布; (b) 细颗粒凝并效率

    Fig. 6.  Influence of additional droplet number concentration on performance of acoustic agglomeration: (a) Particle size distribution; (b) agglomeration efficiency of fine particles.

    表 1  模型验证采用的参数

    Table 1.  Parameters used for model validation.

    P/PaT/KL/dBf/Hzt/sρs/(kg·m–3)ρl/(kg·m–3)efp
    数值101325298.1514414004250010000.60.2
    下载: 导出CSV

    表 2  数值模拟参数

    Table 2.  Parameters used in numerical simulation.

    P/PaT/KL/dBf/Hzt/sρs/(kg·m–3)ρl/(kg·m–3)efp
    数值101325298.1514020004250010000.60.2
    下载: 导出CSV
  • [1]

    Zhou D, Luo Z, Jiang J, Chen H, Lu M, Fang M 2016 Powder Technol. 289 52Google Scholar

    [2]

    Shang X P, Ng B F, Wan M P, Xiong J W, Arikrishnan S 2018 Aerosol Sci. Technol. 52 872Google Scholar

    [3]

    Zhang G X, Ma Z F, Shen J, Zhang K, Wang J Q, Chi Z H 2020 J. Hazard. Maters. 382 121089Google Scholar

    [4]

    屈广宁, 凡凤仙, 张斯宏, 苏明旭 2020 物理学报 69 064704Google Scholar

    Qu G N, Fan F X, Zhang S H, Su M X 2020 Acta Phys. Sin. 69 064704Google Scholar

    [5]

    Wu Z H, Fan F X, Yan J P, Chen H T, Hu X H, Su M X 2022 Chem. Eng. Sci. 249 117298Google Scholar

    [6]

    Liu J Z, Zhang G X, Zhou J H, Zhao W D, Cen K F 2009 Powder Technol. 193 20Google Scholar

    [7]

    Fan F X, Zhang M J, Peng Z B, Chen J, Su M X, Moghtaderi B, Doroodchi E 2017 Aerosol Air Qual. Res. 17 1073Google Scholar

    [8]

    Yan J P, Chen L Q, Li Z 2016 Fuel. 165 316Google Scholar

    [9]

    Zhang G X, Zhang L L, Wang J, Hu E 2017 Powder Technol. 317 181Google Scholar

    [10]

    Wang J, Liu J Z, Zhang G X, Zhou J H, Cen K F 2011 Powder Technol. 210 315Google Scholar

    [11]

    Yang N N, Fan F X, Hu X H, Su M X 2022 J. Aerosol Sci. 165 106018Google Scholar

    [12]

    Yan J P, Chen L Q, Lin Q 2017 Powder Technol. 315 106Google Scholar

    [13]

    Chen H, Wang T, Luo Z Y, Zhou D, Lu M S, He M C, Fang M X, Cen K F 2017 Aerosol Air Qual. Res. 17 857Google Scholar

    [14]

    Yan J P, Lin Q, Zhao S H, Chen L Q 2018 Powder Technol. 340 8Google Scholar

    [15]

    Zhang G X, Wang J Q, Chi Z H, Hu E 2018 Chem. Eng. Sci. 187 342Google Scholar

    [16]

    Shang X P, Wan M P, Ng B F, Ding S R 2020 Powder Technol. 362 111Google Scholar

    [17]

    Crowe C T, Schwarzkopf J D, Scommerfeld M, Tsuij Y 2012 Multiphase Flows with Droplets and Particles (2nd Ed.) (New York: CRC Press) pp119–137

    [18]

    Higashitani K, Makino H, Matsusaka S 2020 Powder Technology Handbook (4th Ed.) (New York: CRC Press) p60

    [19]

    Tsuji Y, Tanaka T, Yonemura S 1998 Powder Technol. 95 254Google Scholar

    [20]

    Zhang G X, Liu J Z, Wang J, Zhou J H, Cen K F 2012 Chin. Sci. Bull. 57 2404Google Scholar

    [21]

    Song L 1990 Ph. D. Dissertation (State College: Pennsylvania State University)

    [22]

    Sgrott O L, Sommerfeld M 2019 Can. J. Chem. Eng. 97 511

    [23]

    Ennis B J 1991 Powder Technol. 65 257Google Scholar

    [24]

    He Y X, Zhao H B 2016 Int. J. Multiphase Flow. 83 12Google Scholar

    [25]

    Kleinhans U, Wieland C, Frandsen F J, Spliethoff H 2018 Prog. Energy Combust. Sci. 68 65Google Scholar

  • [1] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究. 物理学报, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [2] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [3] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析. 物理学报, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [4] 屈广宁, 凡凤仙, 张斯宏, 苏明旭. 驻波声场中单分散细颗粒的相互作用特性. 物理学报, 2020, 69(6): 064704. doi: 10.7498/aps.69.20191681
    [5] 周剑宏, 童宝宏, 王伟, 苏家磊. 油滴撞击油膜层内气泡的变形与破裂过程的数值模拟. 物理学报, 2018, 67(11): 114701. doi: 10.7498/aps.67.20180133
    [6] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力. 物理学报, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [7] 危卫, 张力元, 顾兆林. 工业中粉体颗粒的荷电机理及数值模拟方法. 物理学报, 2015, 64(16): 168301. doi: 10.7498/aps.64.168301
    [8] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [9] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟. 物理学报, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [10] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟. 物理学报, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [11] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [12] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [13] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟. 物理学报, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [14] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [15] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [16] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [17] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [18] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟. 物理学报, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [19] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [20] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟. 物理学报, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
计量
  • 文章访问数:  2103
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-03
  • 修回日期:  2023-01-11
  • 上网日期:  2023-01-18
  • 刊出日期:  2023-03-20

/

返回文章
返回