搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究

闻鹏 陶钢

引用本文:
Citation:

温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究

闻鹏, 陶钢

Molecular dynamics study of the effect of temperature on the shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys

Wen Peng, Tao Gang
PDF
导出引用
  • 高熵合金作为一类新兴合金材料,由于其优异的力学性能,在航空、航天、军事等领域具有广阔的应用前景。本文利用分子动力学方法,探讨了温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制的影响。研究发现初始温度的增加使得冲击压力、冲击波传播速度和冲击温升下降。冲击Hugoniot弹性极限随着温度的上升线性下降。随着冲击强度的增加,CoCrFeMnNi高熵合金发生了复杂的塑性变形,包括位错滑移、相变、变形孪晶和冲击诱导非晶化。在较高的初始温度下,CoCrFeMnNi高熵合金内部出现无序团簇,其和由FCC转变而成的BCC结构以及无序结构是位错成核的重要来源。由于Mn元素具有相对较大的原子体积和势能,所以在Mn元素的周围会出现较大的晶格畸变和局部应力,从而为冲击诱导塑性变形提供较大的贡献。在温度较高时, Fe元素对塑性变形的贡献和Mn元素一样重要。研究结果有助于深刻理解CoCrFeMnNi高熵合金的冲击诱导塑性和相关变形机制,为CoCrFeMnNi高熵合金在不同温度下涉及高应变率冲击过程的应用提供理论支撑。
    High-entropy alloys have broad application prospects in aviation,aerospace,military and other fields due to their excellent mechanical properties.Temperature is an important external factor affecting the shock response of high-entropy alloys.Molecular dynamics methods are used to investigate the effect of temperature on the shock response and plastic deformation mechanisms of CoCrFeMnNi high-entropy alloys.The effects of temperature on the atomic volume and the radial distribution function of CoCrFeMnNi high-entropy alloys are studied.Then,the piston method is used to generate shock waves in the sample to research the shock response of CoCrFeMnNi high-entropy alloys.The polyhedral template matching method is used to observe the evolution of atomic-scale defects during the shock compression.The results show that the shock pressure,the shock wave propagation velocity,and the shock-induced temperature rise decrease with the increase of the initial temperature.For example,when piston velocity Up=1.5 km/s,the shock pressure at an initial temperature of 1000 K decreased by 6.7% compared to that at 1 K.Moreover,the shock Hugoniot elastic limit decrease linearly with the increase of temperature.The Hugoniot Up- Us curve of CoCrFeMnNi HEA in the plastic stage can be linearly fitted by the formula Us=c0+sUp.c0 decreases with increasing temperature.With increasing shock intensities,CoCrFeMnNi high-entropy alloys undergo complex plastic deformation,including dislocation slip,phase transformation,deformation twinning,and shock-induced amorphization.At relatively high initial temperature,disordered clusters appear inside CoCrFeMnNi HEA,which together with the BCC structure transformed from FCC and disordered structure are significant dislocation nucleation sources.Compared with other elements,Mn element has the largest proportion (25.4%) in disordered clusters.Due to the large atomic volume and potential energy,large lattice distortion and local stress occur around the Mn-rich element,which provides dominant contribution to shock-induced plastic deformation.At high temperatures,the contribution of Fe element to plastic deformation is as important as that of Mn element.The research results contribute to a deep understanding of the shock-induced plasticity and deformation mechanisms of CoCrFeMnNi high-entropy alloys.
  • [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004Adv. Eng. Mater. 6 299

    [2]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004Mater. Sci. Eng. A 375-377 213

    [3]

    Li Z, Zhao S, Ritchie R O, Meyers M A 2019Prog. Mater. Sci. 102 296

    [4]

    Miracle D B, Senkov O N 2017Acta Mater. 122 448

    [5]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014Prog. Mater. Sci. 61 1

    [6]

    Li W, Xie D, Li D, Zhang Y, Gao Y, Liaw P K 2021Prog. Mater. Sci. 118 100777

    [7]

    Schuh C A, Hufnagel T C, Ramamurty U 2007Acta Mater. 55 4067

    [8]

    Jiao Z M, Ma S G, Chu M Y, Yang H J, Wang Z H, Zhang Y, Qiao J W 2016J. Mater. Eng. Perform. 25 451

    [9]

    Kumar N, Ying Q, Nie X, Mishra R S, Tang Z, Liaw P K, Brennan R E, Doherty K J, Cho K C 2015Mater. Des. 86 598

    [10]

    Qiao Y, Chen Y, Cao F H, Wang H Y, Dai L H 2021Int. J. Impact Eng. 158 104008

    [11]

    Jiang Z J, He J Y, Wang H Y, Zhang H S, Lu Z P, Dai L H 2016Mater. Res. Lett. 4 226

    [12]

    Liu X F, Tian Z L, Zhang X F, Chen H H, Liu T W, Chen Y, Wang Y J, Dai L H 2020Acta Mater. 186 257

    [13]

    Chen H, Zhang X, Xiong W, Liu C, Wei H, Wang H, Dai L 2020Chinese J. Theor. Appl. Mech. 52 1443

    [14]

    Zhang Z, Zhang H, Tang Y, Zhu L, Ye Y, Li S, Bai S 2017Mater. Des. 133 435

    [15]

    Zhang T W, Jiao Z M, Wang Z H, Qiao J W 2017Scr. Mater. 136 15

    [16]

    Wen P, Tao G, Spearot D E, Phillpot S R 2022J. Appl. Phys. 131 051101

    [17]

    Zhao L, Zong H, Ding X, Lookman T 2021Acta Mater. 209 116801

    [18]

    Xie Z, Jian W R, Xu S, Beyerlein I J, Zhang X, Wang Z, Yao X 2021Acta Mater. 221 117380

    [19]

    Jian W R, Xie Z, Xu S, Yao X, Beyerlein I J 2022Scr. Mater. 209 114379

    [20]

    Thürmer D, Gunkelmann N 2022J. Appl. Phys. 131 065902

    [21]

    Thürmer D, Zhao S, Deluigi O R, Stan C, Alhafez I A, Urbassek H M, Meyers M A, Bringa E M, Gunkelmann N 2022J. Alloys Compd. 895 162567

    [22]

    Liu B, Jian Z, Guo L, Li X, Wang K, Deng H, Hu W, Xiao S, Yuan D 2022Int. J. Mech. Sci. 226 107373

    [23]

    Singh S K, Parashar A 2022Comput. Mater. Sci. 209 111402

    [24]

    Huang S, Li W, Lu S, Tian F, Shen J, Holmström E, Vitos L 2015Scr. Mater. 108 44

    [25]

    Fu J X, Cao C M, Tong W, Hao Y X, Peng L M 2017Mater. Sci. Eng. A 690 418

    [26]

    Kawamura M, Asakura M, Okamoto N L, Kishida K, Inui H, George E P 2021Acta Mater. 203

    [27]

    Laplanche G, Gadaud P, Horst O, Otto F, Eggeler G, George E P 2015J. Alloys Compd. 623 348

    [28]

    Laplanche G, Gadaud P, Bärsch C, Demtröder K, Reinhart C, Schreuer J, George E P 2018J. Alloys Compd. 746 244

    [29]

    Haglund A, Koehler M, Catoor D, George E P, Keppens V 2015Intermetallics 58 62

    [30]

    Choi W M, Jo Y H, Sohn S S, Lee S, Lee B J 2018npj Comput. Mater. 4 1

    [31]

    Fang Q, Chen Y, Li J, Jiang C, Liu B, Liu Y, Liaw P K 2019Int. J. Plast. 114 161

    [32]

    Alabd Alhafez I, Ruestes C J, Bringa E M, Urbassek H M 2019J. Alloys Compd. 803 618

    [33]

    Goede A, Preissner R, Frömmel C 1997J. Comput. Chem. 18 1113

    [34]

    Holian B L, Lomdahl P S 1998Science 280 2085

    [35]

    Hahn E N, Germann T C, Ravelo R, Hammerberg J E, Meyers M A 2017Acta Mater. 126 313

    [36]

    Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022Comput. Phys. Commun. 271 108171

    [37]

    Larsen P M, Schmidt Sø, SchiØtz J 2016Model. Simul. Mater. Sci. Eng. 24

    [38]

    Stukowski A 2009Model. Simul. Mater. Sci. Eng. 18 15012

    [39]

    Luo G, Huang S, Hu J, Zhu Y, Wang J, Yang G, Zhang R, Sun Y, Zhang J, Shen Q 2022AIP Adv. 12

    [40]

    Tian X, Cui J, Ma K, Xiang M 2020Int. J. Heat Mass Transf. 158 120013

    [41]

    Wang Y, Zeng X, Yang X, Xu T 2022Comput. Mater. Sci. 201 110870

    [42]

    Wen P, Demaske B, Spearot D E, Phillpot S R, Tao G 2021J. Appl. Phys. 129 165103

    [43]

    Sharma S M, Turneaure S J, Winey J M, Gupta Y M 2020Phys. Rev. B 102 1

  • [1] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理. 物理学报, doi: 10.7498/aps.72.20222439
    [2] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, doi: 10.7498/aps.71.20221621
    [3] 周明锦, 侯氢, 潘荣剑, 吴璐, 付宝勤. 锆铌合金的特殊准随机结构模型的分子动力学研究. 物理学报, doi: 10.7498/aps.70.20201407
    [4] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, doi: 10.7498/aps.70.20210058
    [5] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, doi: 10.7498/aps.70.20201986
    [6] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210324
    [7] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20200323
    [8] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, doi: 10.7498/aps.69.20191671
    [9] 王云天, 曾祥国, 杨鑫. 高应变率下温度对单晶铁中孔洞成核与生长影响的分子动力学研究. 物理学报, doi: 10.7498/aps.68.20190920
    [10] 姜太龙, 喻寅, 宦强, 李永强, 贺红亮. 设计脆性材料的冲击塑性. 物理学报, doi: 10.7498/aps.64.188301
    [11] 喻寅, 贺红亮, 王文强, 卢铁城. 含微孔洞脆性材料的冲击响应特性与介观演化机制. 物理学报, doi: 10.7498/aps.63.246102
    [12] 马文, 陆彦文. 纳米多晶铜中冲击波阵面的分子动力学研究. 物理学报, doi: 10.7498/aps.62.036201
    [13] 郭巧能, 曹义刚, 孙强, 刘忠侠, 贾瑜, 霍裕平. 温度对超薄铜膜疲劳性能影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.62.107103
    [14] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, doi: 10.7498/aps.60.016107
    [15] 陈敏, 侯氢. 分子动力学方法研究钛中预存缺陷对氦融合的影响. 物理学报, doi: 10.7498/aps.59.1185
    [16] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, doi: 10.7498/aps.59.1225
    [17] 陈敏, 汪俊, 侯氢. 氦对钛的体胀及稳定性影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.58.1149
    [18] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, doi: 10.7498/aps.56.5389
    [19] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.54.4836
    [20] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.2386
计量
  • 文章访问数:  1915
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 上网日期:  2022-10-13

/

返回文章
返回