搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流动隐身衣的均匀化设计与减阻特性

王浩 姚能智 王斌 王学生

引用本文:
Citation:

流动隐身衣的均匀化设计与减阻特性

王浩, 姚能智, 王斌, 王学生

Homogenization design and drag reduction characteristics of hydrodynamic cloaks

Wang Hao, Yao Neng-Zhi, Wang Bin, Wang Xue-Sheng
PDF
HTML
导出引用
  • 流动隐身衣因为可以显著降低指定目标的表面阻力而备受关注. 然而大多数传统流动隐身衣的设计参数为非均匀各向异性, 非均匀这一限制增加了制备流动隐身衣的难度. 为突破这种限制, 本文采用等效介质理论与积分中值定理, 将流动隐身衣所需的设计参数均匀化. 通过数值模拟验证了简化后的均匀流动隐身衣具有与非均匀流动隐身衣一样的隐身效果, 并且同样适用于多种流场. 这种简化方法不仅可以将非均匀流动隐身衣简化为均匀流动隐身衣, 更重要的是可以适用于其他领域, 如光学、声学、电磁学与热学等不同领域的超材料均匀化设计, 为降低超材料制备难度提供了新方法. 此外, 基于均匀流动隐身衣对不同流场的适用性, 首次设计了一种流动伪装装置, 该装置可以将原始物体所产生的流场伪装成由任意物体引起的期望流场, 为实现流动伪装提供了解决方案. 最后, 定量对比分析了流动隐身衣的隐身与减阻性能随着雷诺数增加的变化, 结果表明在非蠕动流时流动隐身衣仍然具有良好的隐身性能与较高的减阻效率.
    Hydrodynamic cloaks have attracted extensive attention because of their ability to significantly reduce the surface resistance of designated target. However, most of parameters of traditional hydrodynamic cloaks present inhomogeneous and anisotropy, which increases the challenge of manufacturing hydrodynamic cloaks for us. To overcome this limitation, equivalent medium theory and integral median theorem are used to homogenize the parameters of hydrodynamic cloaks. Numerical simulations verify that the simplified homogeneous hydrodynamic cloaks exhibit the equivalent cloaking effect as inhomogeneous hydrodynamic cloaks, which can be applied to different flow fields as well. This simplified method not only can simplify inhomogeneous hydrodynamic cloaks to homogeneous hydrodynamic cloaks, but also can be applied to other physical fields, such as optics, acoustics, electromagnetics, and thermodynamics among other areas for the homogenization of metamaterial design, providing a new method to relax the difficulty of metamaterial design. In addition, based on the applicability of homogeneous hydrodynamic cloaks to different flow fields, hydrodynamic camouflage devices are designed that can camouflage the flow fields generated by the original objects into fields caused by arbitrary objects, offering a scheme for achieving hydrodynamic camouflage. Finally, as Reynolds numbers increase, the cloaking and drag reduction performance of hydrodynamic cloaks are quantitatively compared and analyzed. The results show that hydrodynamic cloaks still exhibit high performance in cloaking and drag reduction in non-creeping flows.
      通信作者: 王斌, bwang@ecust.edu.cn ; 王学生, wangxs@ecust.edu.cn
    • 基金项目: 上海市科技发展基金(批准号: 22YF1410600)资助的课题.
      Corresponding author: Wang Bin, bwang@ecust.edu.cn ; Wang Xue-Sheng, wangxs@ecust.edu.cn
    • Funds: Project supported by the Science and Technology Development Funds of Shanghai, China (Grant No. 22YF1410600).
    [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [2]

    Schurig D, Mock J J, Justice B J, Cummer J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [3]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366Google Scholar

    [4]

    Han T, Qiu C W, Tang X 2010 Opt. Lett. 35 2642Google Scholar

    [5]

    Chen H, Chan C T 2007 Appl. Phys. Lett. 91 183518Google Scholar

    [6]

    Zhang S, Xia C, Fang N 2011 Phys. Rev. Lett. 106 024301Google Scholar

    [7]

    Greenleaf A, Kurylev Y, Lassas M 2012 Proc. Natl. Acad. Sci. U.S.A. 109 10169Google Scholar

    [8]

    沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森 2012 物理学报 61 134303Google Scholar

    Shen H J, Wen J H, Yu D L, Cai L, Wen X S 2012 Acta Phys. Sin. 61 134303Google Scholar

    [9]

    Zigoneanu L, Popa B I, Cummer S A 2014 Nat. Mater. 13 352Google Scholar

    [10]

    陆智淼, 蔡力, 温激鸿, 温熙森 2016 物理学报 65 174301Google Scholar

    Lu Z M, Cai L, Wen J H, Wen X S 2016 Acta Phys. Sin. 65 174301Google Scholar

    [11]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907Google Scholar

    [12]

    Guenneau S, Amra C, Veynante D 2012 Opt. Express 20 8207Google Scholar

    [13]

    秦春雷, 杨晶晶, 黄铭 2014 物理学报 63 194402Google Scholar

    Qin C L, Yang J J, Huang M 2014 Acta Phys. Sin. 63 194402Google Scholar

    [14]

    Li Y, Shen X, Wu Z, Huang J P, Chen Y X, Ni Y S, Huang J P 2015 Phys. Rev. Lett. 115 195503Google Scholar

    [15]

    Shen X, Li Y, Jiang C, Huang J P 2016 Phys. Rev. Lett. 117 055501Google Scholar

    [16]

    夏舸, 杨立, 寇蔚, 杜勇成 2017 物理学报 66 104401Google Scholar

    Xia K, Yang L, Kou W, Du Y C 2017 Acta Phys. Sin. 66 104401Google Scholar

    [17]

    Hu R, Zhou S, Li Y, Lei D Y, Luo X B, Qiu C W 2018 Adv. Mater. 30 1707237Google Scholar

    [18]

    Wang B, Shih T M, Huang J P 2021 Appl. Therm. Eng. 190 116726Google Scholar

    [19]

    Huang J P 2020 ES Energy Environ. 7 1Google Scholar

    [20]

    Xu L J, Huang J P 2020 Chin. Phys. Lett. 37 080502Google Scholar

    [21]

    Xu L J, Huang J P 2020 Chin. Phys. Lett. 37 120501Google Scholar

    [22]

    Yang S, Wang J, Dai G L, Yang F B, Huang J P 2021 Phys. Rep. 908 1Google Scholar

    [23]

    Xu L J, Yang S, Huang J P 2021 EPL 133 20006Google Scholar

    [24]

    Wang H, Yao N Z, Wang B, Shih T M, Wang X S 2022 Appl. Therm. Eng. 206 118012Google Scholar

    [25]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002Google Scholar

    [26]

    Greenleaf A, Kurylev Y, Lassas M, Uhlmann G 2008 Phys. Rev. Lett. 101 220404Google Scholar

    [27]

    Bückmann T, Thiel M, Kadic M, Schittny R, Wegener M 2014 Nat. Commun. 5 1

    [28]

    Bückmann T, Kadic M, Schittny R, Wegener M 2015 Proc. Natl. Acad. Sci. U.S.A. 112 4930Google Scholar

    [29]

    Urzhumov Y A, Smith D R 2011 Phys. Rev. Lett. 107 074501Google Scholar

    [30]

    Urzhumov Y A, Smith D R 2012 Phys. Rev. E 86 056313Google Scholar

    [31]

    Li C Y, Xu L, Zhu L L, Zou S Y, Liu Q H, Wang Z Y, Chen H Y 2018 Phys. Rev. Lett. 121 104501Google Scholar

    [32]

    Zou S Y, Xu Y D, Zatianina R, Li C Y, Liang X, Zhu L L, Zhang Y Q, Liu G H, Liu Q H, Chen H Y, Wang Z Y 2019 Phys. Rev. Lett. 123 074501Google Scholar

    [33]

    Tay F, Zhang Y, Xu H, Goh H, Luo Y, Zhang B L 2019 arXiv: 1908.07169 [physics.app-ph]

    [34]

    Park J, Youn J R, Song Y S 2019 Phys. Rev. Lett. 123 074502Google Scholar

    [35]

    Park J, Youn J R, Song Y S 2019 Phys. Rev. Appl. 12 061002Google Scholar

    [36]

    Park J, Youn J R, Song Y S 2021 Extreme Mech. Lett. 42 101061Google Scholar

    [37]

    Wang B, Shih T M, Xu L J, Huang J P 2021 Phys. Rev. Appl. 15 034014Google Scholar

    [38]

    Boyko E, Bacheva V, Eigenbrod M, Paratore F, D.Gat A, Hardt S, Bercovici M 2021 Phys. Rev. Lett. 126 184502Google Scholar

    [39]

    Hele-Shaw 1898 Nature 58 520

    [40]

    Park J, Song Y S 2020 J. Fluids Struct. 98 103136Google Scholar

  • 图 1  模型示意图 (a) 边界条件; (b) 空间坐标变换

    Fig. 1.  Schematic models: (a) Boundary conditions; (b) the coordinate transformation

    图 2  (a)径向粘度与(b)切向粘度随$ r^{\prime}/R_1 $的分布

    Fig. 2.  Distributions of (a) radial viscosity and (b) azimuthal viscosity with $ r^{\prime}/R_1 $.

    图 3  均匀流场下的速度分布图, 黑色线条为流线, 白色线条为等压线 (a) 不含障碍物; (b) 含障碍物; (c) 含障碍物与非均匀隐身衣; (d) 含障碍物与均匀隐身衣

    Fig. 3.  Velocity distributions superimposed with streamlines (black color) and isobars (white color) for uniform flow fields: (a) Obstacle absent; (b) obstacle existent; (c) obstacle and inhomogeneous cloak existent; (d) obstacle and homogeneous cloak existent

    图 4  (a) 压强分布图, 黑色线条、红色三角形与蓝色三角形分别表示图3(a)图3(c)图3(d)$ r^{\prime}=R_2 $处的压强; (b) 速度分布图, 黑色线条、红色线条与蓝色线条分别表示图3(a)图3(c)图3(d)$ y=0 $处的速度分布

    Fig. 4.  (a) Pressure distributions. Black line, red triangle and blue triangle indicate the pressure at $ r^{\prime}=R_2 $ in Fig. 3(a) (only background), Fig. 3(c) (with inhomogeneous cloaks) and Fig. 3(d) (with homogeneous cloaks) respectively. (b) Velocity distributions. Black line, red line and blue line indicate the velocity at $ y=0 $ in Fig. 3(a) (only background), Fig. 3(c) (with inhomogeneous cloaks) and Fig. 3(d) (with homogeneous cloaks) respectively

    图 5  非均匀流场下的速度分布图, 黑色线条为流线, 白色线条为等压线 (a) 不含障碍物; (b) 含障碍物与非均匀隐身衣; (c) 含障碍物与均匀隐身衣

    Fig. 5.  Velocity distributions superimposed with streamlines (black color) and isobars (white color) for non-uniform flow fields: (a) Obstacle absent; (b) obstacle and inhomogeneous cloak existent; (c) obstacle and homogeneous cloak existent

    图 A1  流动伪装示意图 (a) 仅含障碍物; (b) 隐身状态; (c) 一个障碍物被伪装成两个; (d) 含两个障碍物. 从伪装图中可以看出, 图(c)红色虚线外的流场与图(d)两个目标物体的流场一致, 说明一个物体已经被隐藏并伪装成两个物体

    Fig. A1.  Schematic of hydrodynamic camouflage: (a) Only one obstacle exists; (b) cloaking; (c) one obstacle camouflaged as two obstacles; (d) two obstacles exist. As can be seen from the camouflage devices, the flow fields outside the red dashed line in panel (c) coincide with the flow fields of the two-target objects in panel (d), indicating that one object has been hidden and camouflaged as two objects

    图 6  (a) 隐身效果, 其中Ω表示含隐身衣流场与纯背景流场的差异程度; (b) 减阻效果, 其中$ \eta_{{\rm{reduce}}} $表示隐身衣的减阻程度; (c) 当流域雷诺数$ Re=1 $时, 非均匀流动隐身衣(c1)与均匀流动隐身衣(c2)的速度分布; (d) 当流域雷诺数$ Re=10 $时, 非均匀流动隐身衣(d1)与均匀流动隐身衣(d2)的速度分布

    Fig. 6.  (a) Cloaking effects, in which Ω presents the difference between flow fields with cloaks and pure background flow fields; (b) Drag reduction effects, in which $ \eta_{reduce} $ denotes the degree of drag reduction of cloaks; (c) Velocity distributions of inhomogeneous cloaks (c1) and homogeneous cloaks (c2) at $ Re = 1 $; (d) Velocity distributions of inhomogeneous cloaks (d1) and homogeneous cloaks (d2) at $ Re = 10 $

  • [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [2]

    Schurig D, Mock J J, Justice B J, Cummer J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [3]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366Google Scholar

    [4]

    Han T, Qiu C W, Tang X 2010 Opt. Lett. 35 2642Google Scholar

    [5]

    Chen H, Chan C T 2007 Appl. Phys. Lett. 91 183518Google Scholar

    [6]

    Zhang S, Xia C, Fang N 2011 Phys. Rev. Lett. 106 024301Google Scholar

    [7]

    Greenleaf A, Kurylev Y, Lassas M 2012 Proc. Natl. Acad. Sci. U.S.A. 109 10169Google Scholar

    [8]

    沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森 2012 物理学报 61 134303Google Scholar

    Shen H J, Wen J H, Yu D L, Cai L, Wen X S 2012 Acta Phys. Sin. 61 134303Google Scholar

    [9]

    Zigoneanu L, Popa B I, Cummer S A 2014 Nat. Mater. 13 352Google Scholar

    [10]

    陆智淼, 蔡力, 温激鸿, 温熙森 2016 物理学报 65 174301Google Scholar

    Lu Z M, Cai L, Wen J H, Wen X S 2016 Acta Phys. Sin. 65 174301Google Scholar

    [11]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907Google Scholar

    [12]

    Guenneau S, Amra C, Veynante D 2012 Opt. Express 20 8207Google Scholar

    [13]

    秦春雷, 杨晶晶, 黄铭 2014 物理学报 63 194402Google Scholar

    Qin C L, Yang J J, Huang M 2014 Acta Phys. Sin. 63 194402Google Scholar

    [14]

    Li Y, Shen X, Wu Z, Huang J P, Chen Y X, Ni Y S, Huang J P 2015 Phys. Rev. Lett. 115 195503Google Scholar

    [15]

    Shen X, Li Y, Jiang C, Huang J P 2016 Phys. Rev. Lett. 117 055501Google Scholar

    [16]

    夏舸, 杨立, 寇蔚, 杜勇成 2017 物理学报 66 104401Google Scholar

    Xia K, Yang L, Kou W, Du Y C 2017 Acta Phys. Sin. 66 104401Google Scholar

    [17]

    Hu R, Zhou S, Li Y, Lei D Y, Luo X B, Qiu C W 2018 Adv. Mater. 30 1707237Google Scholar

    [18]

    Wang B, Shih T M, Huang J P 2021 Appl. Therm. Eng. 190 116726Google Scholar

    [19]

    Huang J P 2020 ES Energy Environ. 7 1Google Scholar

    [20]

    Xu L J, Huang J P 2020 Chin. Phys. Lett. 37 080502Google Scholar

    [21]

    Xu L J, Huang J P 2020 Chin. Phys. Lett. 37 120501Google Scholar

    [22]

    Yang S, Wang J, Dai G L, Yang F B, Huang J P 2021 Phys. Rep. 908 1Google Scholar

    [23]

    Xu L J, Yang S, Huang J P 2021 EPL 133 20006Google Scholar

    [24]

    Wang H, Yao N Z, Wang B, Shih T M, Wang X S 2022 Appl. Therm. Eng. 206 118012Google Scholar

    [25]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002Google Scholar

    [26]

    Greenleaf A, Kurylev Y, Lassas M, Uhlmann G 2008 Phys. Rev. Lett. 101 220404Google Scholar

    [27]

    Bückmann T, Thiel M, Kadic M, Schittny R, Wegener M 2014 Nat. Commun. 5 1

    [28]

    Bückmann T, Kadic M, Schittny R, Wegener M 2015 Proc. Natl. Acad. Sci. U.S.A. 112 4930Google Scholar

    [29]

    Urzhumov Y A, Smith D R 2011 Phys. Rev. Lett. 107 074501Google Scholar

    [30]

    Urzhumov Y A, Smith D R 2012 Phys. Rev. E 86 056313Google Scholar

    [31]

    Li C Y, Xu L, Zhu L L, Zou S Y, Liu Q H, Wang Z Y, Chen H Y 2018 Phys. Rev. Lett. 121 104501Google Scholar

    [32]

    Zou S Y, Xu Y D, Zatianina R, Li C Y, Liang X, Zhu L L, Zhang Y Q, Liu G H, Liu Q H, Chen H Y, Wang Z Y 2019 Phys. Rev. Lett. 123 074501Google Scholar

    [33]

    Tay F, Zhang Y, Xu H, Goh H, Luo Y, Zhang B L 2019 arXiv: 1908.07169 [physics.app-ph]

    [34]

    Park J, Youn J R, Song Y S 2019 Phys. Rev. Lett. 123 074502Google Scholar

    [35]

    Park J, Youn J R, Song Y S 2019 Phys. Rev. Appl. 12 061002Google Scholar

    [36]

    Park J, Youn J R, Song Y S 2021 Extreme Mech. Lett. 42 101061Google Scholar

    [37]

    Wang B, Shih T M, Xu L J, Huang J P 2021 Phys. Rev. Appl. 15 034014Google Scholar

    [38]

    Boyko E, Bacheva V, Eigenbrod M, Paratore F, D.Gat A, Hardt S, Bercovici M 2021 Phys. Rev. Lett. 126 184502Google Scholar

    [39]

    Hele-Shaw 1898 Nature 58 520

    [40]

    Park J, Song Y S 2020 J. Fluids Struct. 98 103136Google Scholar

  • [1] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [2] 王浩, 姚能智, 王斌, 王学生. 流动隐身衣的均匀化设计与减阻特性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220346
    [3] 崔铁军, 吴浩天, 刘硕. 信息超材料研究进展. 物理学报, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
    [4] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [5] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计. 物理学报, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [6] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [7] 孙良奎, 于哲峰, 黄洁. 基于超材料的定向传热结构研究与设计. 物理学报, 2015, 64(8): 084401. doi: 10.7498/aps.64.084401
    [8] 孙良奎, 于哲峰, 黄洁. 基于超材料的平板二维定向传热结构设计. 物理学报, 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [9] 秦春雷, 杨晶晶, 黄铭, 胡艺耀. 基于拉普拉斯方程的任意形状热斗篷研究与设计. 物理学报, 2014, 63(19): 194402. doi: 10.7498/aps.63.194402
    [10] 周卓辉, 刘晓来, 黄大庆, 康飞宇. 一种基于十字镂空结构的低频超材料吸波体的设计与制备. 物理学报, 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [11] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计. 物理学报, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [12] 常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波. 基于加权实数编码遗传算法的超材料优化设计. 物理学报, 2014, 63(8): 087804. doi: 10.7498/aps.63.087804
    [13] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [14] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体. 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [15] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究. 物理学报, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [16] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [17] 程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜. 基于超材料与电阻型频率选择表面的薄型宽频带吸波体的设计. 物理学报, 2012, 61(13): 134101. doi: 10.7498/aps.61.134101
    [18] 刘涛, 曹祥玉, 高军, 郑秋容, 李文强. 基于超材料的吸波体设计及其波导缝隙天线应用. 物理学报, 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [19] 吴翔, 裴志斌, 屈绍波, 徐卓, 柏鹏, 王甲富, 王新华, 周航. 具有极化选择特性的超材料频率选择表面的设计. 物理学报, 2011, 60(11): 114201. doi: 10.7498/aps.60.114201
    [20] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
计量
  • 文章访问数:  2364
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 修回日期:  2022-03-21
  • 上网日期:  2022-06-20
  • 刊出日期:  2022-07-05

/

返回文章
返回