搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究

王光绪 陶喜霞 熊传兵 刘军林 封飞飞 张萌 江风益

引用本文:
Citation:

牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究

王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益

Effects of Ni-assisted annealing on p-type contact resistivity of GaN-based LED films grown on Si(111) substrates

Wang Guang-Xu, Tao Xi-Xia, Xiong Chuan-Bing, Liu Jun-Lin, Feng Fei-Fei, Zhang Meng, Jiang Feng-Yi
PDF
导出引用
  • 本文通过在硅衬底发光二极管(LED)薄膜p-GaN表面蒸发不同厚度的Ni覆盖层,将其在N2 ∶O2=4 ∶1的气氛中、400℃—750℃的温度范围内进行退火,在去掉薄膜表面Ni覆盖层之后制备Pt/p-GaN欧姆接触层.实验结果表明:退火温度和Ni覆盖层厚度均对硅衬底GaN基LED薄膜p型欧姆接触有重要影响,Ni覆盖退火能够显著降低p型层中Mg受主的激活温度.经牺牲Ni退火后,p型比接触电阻率随退火温度的升高呈先变小后变大的规律,随Ni覆盖层厚度的增加呈先变小后变
    Different thick Ni layers are deposited on the GaN-based LED films grown on Si(111) substrates, then LED films are annealed at 400℃—750 ℃ in the atmosphere of N2 ∶O2=4 ∶1. The Pt / p-GaN contact layer is prepared after removing the Ni-capping layer. It is found that annealing temperature and thickness of Ni-capping layer each have an important influence on the p-type contact of GaN-based LED film. The Ni film can significantly reduce the activation temperature of Mg acceptor of the p-type GaN. The characteristic of p-type contact of Ni-capping sample becomes better first then turns worse with annealing temperature and it become better then turns worse and then better with Ni-capping thickness. After optimization, the specific contact resistivity of Pt/p-GaN in the case of no second annealing can reach 6.1×10-5 Ω·cm2, when Ni-capping layer thickness is 1.5 nm and its annealing temperatune is 450 ℃.
    • 基金项目: 教育部长江学者与创新团队发展计划(批准号:IRT0730)和国家自然科学基金(批准号:51072076, 61040060)资助的课题.
    [1]

    Long H, Fang H, Qi S L, Sang L W, Cao W Y, Yan J, Deng J J, Yang Z J, Zhang G Y 2010 Chin. Phys. B 19 107307

    [2]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F Y 2005 J. Cryst. Growth 285 312

    [3]

    Xiong C b, Jiang F y, Fang W q, Wang L, Liu H c, Mo C l 2006 Sci. China E 49 313

    [4]

    Xiong C, Jiang F, Fang W, Wang L, Mo C, Liu H 2007 J. Lumin. 122-123 185

    [5]

    Feng F F, Liu J L, Qiu C, Wang G X, Jiang F Y 2010 Acta Phys. Sin. 59 5706 (in Chinese) [封飞飞、刘军林、邱 冲、王光绪、江风益 2010 物理学报 59 5706]

    [6]

    Senthil Kumar M, Park J Y, Lee Y S, Chung S J, Hong C H, Suh E K 2008 Jpn. J. Appl. Phys. 47 839

    [7]

    Chen Y X, Shen G D, Han J R, Li J J, Guo W L 2010 Acta Phys. Sin. 59 0545 (in Chinese) [陈依新、沈光地、韩金茹、李建军、郭伟玲 2010 物理学报 59 0545]

    [8]

    Sheu J K, Chi G C, Jou M J 2001 IEEE Electr. Device. L. 22 160

    [9]

    Wang L J, Zhang S M, Zhu J H, Zhu J J, Zhao D G, Liu Z S, Jiang D S, Wang Y T, Yang H 2010 Chin. Phys. B 19 017307

    [10]

    Huang J Y, Fan G H, Zheng S W, Niu Q L, Li S T, Cao J X, Su J, Zhang Y 2010 Chin. Phys. B 19 047205

    [11]

    Nakamura S, Mukai T, Senoh M, Iwasa N 1992 Jpn. J. Appl. Phys. 31 L139

    [12]

    Kuo C H, Chang S J, Su Y K, Wu L W, Sheu J K, Chen C H, Chi G C 2002 Jpn. J. Appl. Phys. 41 L112

    [13]

    Waki I, Fujioka H, Oshima M, Miki H, Fukizawa A 2001 Appl. Phys. Lett. 78 2899

    [14]

    Chien-Chih L, Yuag-Hsin C, Mau-Phon H, Yeong-Her W, Yan-Kuin S, Wen-Bin C, Shi-Ming C 2004 IEEE Photonic. Tech. L. 16

    [15]

    Wang C C, Jenq F L, Liu C C, Hung C I, Wang Y H, Houng M P 2008 Semicond. Sci. Tech. 23 025012

    [16]

    Waki I, Fujioka H, Oshima M, Miki H, Okuyama M 2002 Appl. Surf. Sci. 190

    [17]

    Lin R M, Li J C, Chou Y L, Chen K H, Lin Y H, Lu Y C, Wu M C, Hung H, Lai W C 2007 IEEE Photonic. Tech. L. 19 928

    [18]

    Lee C M, Chuo C C, Liu Y C, Chen I L, Chyi J I 2004 IEEE Electr. Device. L. 25 384

    [19]

    Jang J S, Park S J, Seong T Y 1999 J. Vac. Sci. Technol. B 17 2667

    [20]

    Huh C, Kim H S, Kim S W, Lee J M, Kim D J, Lee I H, Park S J 2000 J. Appl. Phys. 87 4464

    [21]

    Arai T, Sueyoshi H, Koide Y, Moriyama M, Murakami M 2001 J. Appl. Phys. 89 2826

    [22]

    Jang J S, Park S J, Seong T Y 2002 Phys. Stat. Sol. (a) 194 576

    [23]

    Koide Y, Ishikawa H, Kobayashi S, Yamasaki S, Nagai S, Umezaki J, Koike M, Murakami M 1997 Appl. Surf. Sci. 117-118 373

    [24]

    Waki I, Fujioka H, Oshima M, Miki H, Okuyama M 2001 J. Appl. Phys. 90 6500

    [25]

    Tanner R E, Goldfarb I, Castell M R, Briggs G A D 2001 Surf. Sci. 486 167

    [26]

    Utlu G, Artun N, Budak S, Tari S 2010 Appl. Surf. Sci. 256 5069

    [27]

    Ducher R, Kainuma R, Ishida K 2007 Intermetallics 15 148

    [28]

    Guerin R, Guivarc'h A 1989 J. Appl. Phys. 66 2122

    [29]

    Venugopalan H S, Mohney S E, Luther B P, Wolter S D, Redwing J M 1997 J. Appl. Phys. 82 650

    [30]

    Nakamura S, Iwasa N, Senoh M, Mukai T 1992 Jpn. J. Appl. Phys. 31 1258

    [31]

    Huang K, Han R Q 1979 Fundamentals of semiconductor physics (1st ed) (Beijing:Science press) p207 (in Chinese) [黄昆、韩汝琦 1979 半导体物理基础 (第一版) (北京:科学出版社) 第207页]

  • [1]

    Long H, Fang H, Qi S L, Sang L W, Cao W Y, Yan J, Deng J J, Yang Z J, Zhang G Y 2010 Chin. Phys. B 19 107307

    [2]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F Y 2005 J. Cryst. Growth 285 312

    [3]

    Xiong C b, Jiang F y, Fang W q, Wang L, Liu H c, Mo C l 2006 Sci. China E 49 313

    [4]

    Xiong C, Jiang F, Fang W, Wang L, Mo C, Liu H 2007 J. Lumin. 122-123 185

    [5]

    Feng F F, Liu J L, Qiu C, Wang G X, Jiang F Y 2010 Acta Phys. Sin. 59 5706 (in Chinese) [封飞飞、刘军林、邱 冲、王光绪、江风益 2010 物理学报 59 5706]

    [6]

    Senthil Kumar M, Park J Y, Lee Y S, Chung S J, Hong C H, Suh E K 2008 Jpn. J. Appl. Phys. 47 839

    [7]

    Chen Y X, Shen G D, Han J R, Li J J, Guo W L 2010 Acta Phys. Sin. 59 0545 (in Chinese) [陈依新、沈光地、韩金茹、李建军、郭伟玲 2010 物理学报 59 0545]

    [8]

    Sheu J K, Chi G C, Jou M J 2001 IEEE Electr. Device. L. 22 160

    [9]

    Wang L J, Zhang S M, Zhu J H, Zhu J J, Zhao D G, Liu Z S, Jiang D S, Wang Y T, Yang H 2010 Chin. Phys. B 19 017307

    [10]

    Huang J Y, Fan G H, Zheng S W, Niu Q L, Li S T, Cao J X, Su J, Zhang Y 2010 Chin. Phys. B 19 047205

    [11]

    Nakamura S, Mukai T, Senoh M, Iwasa N 1992 Jpn. J. Appl. Phys. 31 L139

    [12]

    Kuo C H, Chang S J, Su Y K, Wu L W, Sheu J K, Chen C H, Chi G C 2002 Jpn. J. Appl. Phys. 41 L112

    [13]

    Waki I, Fujioka H, Oshima M, Miki H, Fukizawa A 2001 Appl. Phys. Lett. 78 2899

    [14]

    Chien-Chih L, Yuag-Hsin C, Mau-Phon H, Yeong-Her W, Yan-Kuin S, Wen-Bin C, Shi-Ming C 2004 IEEE Photonic. Tech. L. 16

    [15]

    Wang C C, Jenq F L, Liu C C, Hung C I, Wang Y H, Houng M P 2008 Semicond. Sci. Tech. 23 025012

    [16]

    Waki I, Fujioka H, Oshima M, Miki H, Okuyama M 2002 Appl. Surf. Sci. 190

    [17]

    Lin R M, Li J C, Chou Y L, Chen K H, Lin Y H, Lu Y C, Wu M C, Hung H, Lai W C 2007 IEEE Photonic. Tech. L. 19 928

    [18]

    Lee C M, Chuo C C, Liu Y C, Chen I L, Chyi J I 2004 IEEE Electr. Device. L. 25 384

    [19]

    Jang J S, Park S J, Seong T Y 1999 J. Vac. Sci. Technol. B 17 2667

    [20]

    Huh C, Kim H S, Kim S W, Lee J M, Kim D J, Lee I H, Park S J 2000 J. Appl. Phys. 87 4464

    [21]

    Arai T, Sueyoshi H, Koide Y, Moriyama M, Murakami M 2001 J. Appl. Phys. 89 2826

    [22]

    Jang J S, Park S J, Seong T Y 2002 Phys. Stat. Sol. (a) 194 576

    [23]

    Koide Y, Ishikawa H, Kobayashi S, Yamasaki S, Nagai S, Umezaki J, Koike M, Murakami M 1997 Appl. Surf. Sci. 117-118 373

    [24]

    Waki I, Fujioka H, Oshima M, Miki H, Okuyama M 2001 J. Appl. Phys. 90 6500

    [25]

    Tanner R E, Goldfarb I, Castell M R, Briggs G A D 2001 Surf. Sci. 486 167

    [26]

    Utlu G, Artun N, Budak S, Tari S 2010 Appl. Surf. Sci. 256 5069

    [27]

    Ducher R, Kainuma R, Ishida K 2007 Intermetallics 15 148

    [28]

    Guerin R, Guivarc'h A 1989 J. Appl. Phys. 66 2122

    [29]

    Venugopalan H S, Mohney S E, Luther B P, Wolter S D, Redwing J M 1997 J. Appl. Phys. 82 650

    [30]

    Nakamura S, Iwasa N, Senoh M, Mukai T 1992 Jpn. J. Appl. Phys. 31 1258

    [31]

    Huang K, Han R Q 1979 Fundamentals of semiconductor physics (1st ed) (Beijing:Science press) p207 (in Chinese) [黄昆、韩汝琦 1979 半导体物理基础 (第一版) (北京:科学出版社) 第207页]

  • [1] 赵建铖, 吴朝兴, 郭太良. 无注入型发光二极管的载流子输运模型研究. 物理学报, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [2] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [3] 王苏杰, 李树强, 吴小明, 陈芳, 江风益. 热退火处理对AuGeNi/n-AlGaInP欧姆接触性能的影响. 物理学报, 2020, 69(4): 048103. doi: 10.7498/aps.69.20191720
    [4] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [5] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响. 物理学报, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [6] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [7] 王光绪, 陈鹏, 刘军林, 吴小明, 莫春兰, 全知觉, 江风益. 刻蚀AlN缓冲层对硅衬底N极性n-GaN表面粗化的影响. 物理学报, 2016, 65(8): 088501. doi: 10.7498/aps.65.088501
    [8] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究. 物理学报, 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [9] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究. 物理学报, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [10] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [11] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究. 物理学报, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [12] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究. 物理学报, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [13] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [14] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [15] 薛正群, 黄生荣, 张保平, 陈朝. 激光诱导p-GaN掺杂对发光二极管性能改善的分析. 物理学报, 2010, 59(2): 1268-1274. doi: 10.7498/aps.59.1268
    [16] 江洋, 罗毅, 汪莱, 李洪涛, 席光义, 赵维, 韩彦军. 柱状与孔状图形衬底对MOVPE生长GaN体材料及LED器件的影响. 物理学报, 2009, 58(5): 3468-3473. doi: 10.7498/aps.58.3468
    [17] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [18] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [19] 刘 杰, 郝 跃, 冯 倩, 王 冲, 张进城, 郭亮良. 基于I-V-T和C-V-T的GaN上Ni/Au肖特基接触特性研究. 物理学报, 2007, 56(6): 3483-3487. doi: 10.7498/aps.56.3483
    [20] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
计量
  • 文章访问数:  7689
  • PDF下载量:  642
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-21
  • 修回日期:  2010-11-10
  • 刊出日期:  2011-07-15

/

返回文章
返回