搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶界对金刚石紫外探测器时间响应性能的影响

王兰喜 陈学康 吴敢 曹生珠 尚凯文

引用本文:
Citation:

晶界对金刚石紫外探测器时间响应性能的影响

王兰喜, 陈学康, 吴敢, 曹生珠, 尚凯文

The influence of grain boundary on time response of diamond ultraviolet photo-detector

Wang Lan-Xi, Chen Xue-Kang, Wu Gan, Cao Sheng-Zhu, Shang Kai-Wen
PDF
导出引用
  • 持续光电导现象是影响多晶金刚石紫外探测器时间响应性能的一个不利因素,它的存在会大大延长探测器的响应时间.本文在微米晶金刚石薄膜上制备了叉指电极间距分别为20μm和30μm的紫外探测器(分别称为器件A和器件B),讨论了晶界对多晶金刚石紫外探测器时间响应性能的影响.结果表明,器件A和器件B均表现出持续光电导和光电导增益现象,并且器件B比器件A更显著.分析得出,晶界缺陷可能在金刚石带隙中引入一个浅能级并起少数载流子陷阱中心的作用,导致了探测器的持续光电导现象和高增益.相比器件A,器件B电极间具有更多的晶界数量,因此器件B表现出更为显著的持续光电导和更高的光电导增益.
    Persistent photoconductivity(PPC) is a deterring factor for the time response of ultraviolet photo-detectors made of polycrystalline diamond films. The existence of PPC can greatly prolong the response time of photo-detectors. In this paper, ultraviolet photo-detectors with interdigital electrode spacings of 20 μm and 30 μm(denoted as "device A" and "device B", respectively) are fabricated on microcrystalline diamond films, and the influences of grain boundary on time response of diamond ultraviolet photo-detectors are discussed. Results show that performances of PPC and photoconductive gain are present in the two photo-detectors, and the PPC is longer and the photoconductive gain is higher in device B than in device A. It is suggested that grain boundaries may induce a shallow level in the bandgap and act as minority carrier trapping centers, leading to PPC and high gain. There are more grain boundaries between the electrodes in device B than in device A, which hence explains the higher photoconductive gain and responsivity as well as more significant PPC in device B than in device A.
    [1]

    Balducci A, Marinelli M, Milani E, Morgada M E, Tucciarone A,Verona-Rinati G, Angelone M, Pillon M 2005 Appl. Phys. Lett.86 193509

    [2]

    Liao M, Koide Y 2006 Appl. Phys. Lett. 89 113509

    [3]

    Liao M, Alvarez J, Imura M, Koide Y 2007 Appl. Phys. Lett. 91163510

    [4]

    Abbaschian R, Zhu H, Clarke C 2005 Diamond Relat. Mater. 141916

    [5]

    Wang L J, Liu J M, Su Q S, Shi W M, Xia Y B 2006 Acta Phys.Sin. 55 2518(in Chinese)[ 王林军,刘健敏,苏青峰,史伟民,夏义本2006 物理学报 55 2518]

    [6]

    Chan S S, McKeag R D, Whitfield M D, Jackman R B 1996 Phys.Stat. Sol. A 154 445

    [7]

    Salvatori S, Rossi M C, Galluzzi F2000 IEEE Trans. Electr. Dev.47 1334

    [8]

    Pace E, Di Benedetto R, Scuderi S 2000 Diamond Relat. Mater. 9987

    [9]

    Li X H, Guo W T, Chen X K, Wu G, Yang J P, Wang R, Cao S Z,Yu R 2007 Acta Phys. Sin. 56 7183(in Chinese)[李晓红,郭晚土,陈学康,吴敢,杨建平,王瑞,曹生珠,余荣 2007 物理学报 56 7183]

    [10]

    Jiang W, Ahn J, Xu F L, Liaw C Y, Chan Y C, Zhou Y, Lam Y L1998 Appl. Phys. Lett. 72 1131

    [11]

    Chen G H, Zhang X W, Ji Y Y, Yan H 1997 Acta Phys. Sin. 461188(in Chinese)[陈光华,张兴旺,季亚英,严辉 1997 物理学报 46 1188]

    [12]

    Ashfold M N R, May P W, Rego C A, Everitt N M 1994 Chem.Soc. Rev. 23 21

    [13]

    Xia Y, Sekiguchi T, Zhang W, Jiang X, Wu W, Yao T 2000 J.Cryst. Growth 213 328

    [14]

    Liu E K, Zhu B S, Luo J S 2003 Physics of Semiconductor(6thEd)(Beijing: Publishing House of Electronics Industry)pp159–364(in Chinese)[刘恩科,朱秉升,罗晋升 2003 半导体物理学(第6版)(北京:电子工业出版社)第159–364页]

    [15]

    Polyakov V I, Rukovishnikov A I, Rossukanyi N M, Ralchenko VG 2001 Diamond Relat. Mater. 10 593

    [16]

    Sze S M, Ng K K 2006 Physics of Semiconductor Devices(3thEd)(Hoboken: John Wiley & Sons)pp42–789

    [17]

    Polyakov V I, Rukovishnikov A I, Rossukanyi N M, PereverzevV G, Pimenov S M, Carlisle J A, Gruen D M, Loubnin E N 2003Diamond Relat. Mater. 12 1776

    [18]

    Zhang Z H, Zhao D G, Sun Y P, Feng Z H, Shen X M, Zhang BS, Feng G, Zheng X H, Yang H 2003 Chin. J. Semicond. 24 34(inChinese)[张泽洪,赵德刚,孙元平,冯志宏,沈晓明,张宝顺,冯淦,郑新和,杨辉 2003 半导体学报 24 34]

    [19]

    Chen H M, Chen Y F, Lee M C, Feng M S 1997 Phys. Rev. B 566942

    [20]

    Reddy C V, Balakrishnan K, Okumura H, Yoshida S 1998 Appl.Phys. Lett. 73 244

    [21]

    De Sio A, Achard J, Tallaire A, Sussmann R S, Collins A T, SilvaF, Pace E 2005 Appl. Phys. Lett. 86 213504

  • [1]

    Balducci A, Marinelli M, Milani E, Morgada M E, Tucciarone A,Verona-Rinati G, Angelone M, Pillon M 2005 Appl. Phys. Lett.86 193509

    [2]

    Liao M, Koide Y 2006 Appl. Phys. Lett. 89 113509

    [3]

    Liao M, Alvarez J, Imura M, Koide Y 2007 Appl. Phys. Lett. 91163510

    [4]

    Abbaschian R, Zhu H, Clarke C 2005 Diamond Relat. Mater. 141916

    [5]

    Wang L J, Liu J M, Su Q S, Shi W M, Xia Y B 2006 Acta Phys.Sin. 55 2518(in Chinese)[ 王林军,刘健敏,苏青峰,史伟民,夏义本2006 物理学报 55 2518]

    [6]

    Chan S S, McKeag R D, Whitfield M D, Jackman R B 1996 Phys.Stat. Sol. A 154 445

    [7]

    Salvatori S, Rossi M C, Galluzzi F2000 IEEE Trans. Electr. Dev.47 1334

    [8]

    Pace E, Di Benedetto R, Scuderi S 2000 Diamond Relat. Mater. 9987

    [9]

    Li X H, Guo W T, Chen X K, Wu G, Yang J P, Wang R, Cao S Z,Yu R 2007 Acta Phys. Sin. 56 7183(in Chinese)[李晓红,郭晚土,陈学康,吴敢,杨建平,王瑞,曹生珠,余荣 2007 物理学报 56 7183]

    [10]

    Jiang W, Ahn J, Xu F L, Liaw C Y, Chan Y C, Zhou Y, Lam Y L1998 Appl. Phys. Lett. 72 1131

    [11]

    Chen G H, Zhang X W, Ji Y Y, Yan H 1997 Acta Phys. Sin. 461188(in Chinese)[陈光华,张兴旺,季亚英,严辉 1997 物理学报 46 1188]

    [12]

    Ashfold M N R, May P W, Rego C A, Everitt N M 1994 Chem.Soc. Rev. 23 21

    [13]

    Xia Y, Sekiguchi T, Zhang W, Jiang X, Wu W, Yao T 2000 J.Cryst. Growth 213 328

    [14]

    Liu E K, Zhu B S, Luo J S 2003 Physics of Semiconductor(6thEd)(Beijing: Publishing House of Electronics Industry)pp159–364(in Chinese)[刘恩科,朱秉升,罗晋升 2003 半导体物理学(第6版)(北京:电子工业出版社)第159–364页]

    [15]

    Polyakov V I, Rukovishnikov A I, Rossukanyi N M, Ralchenko VG 2001 Diamond Relat. Mater. 10 593

    [16]

    Sze S M, Ng K K 2006 Physics of Semiconductor Devices(3thEd)(Hoboken: John Wiley & Sons)pp42–789

    [17]

    Polyakov V I, Rukovishnikov A I, Rossukanyi N M, PereverzevV G, Pimenov S M, Carlisle J A, Gruen D M, Loubnin E N 2003Diamond Relat. Mater. 12 1776

    [18]

    Zhang Z H, Zhao D G, Sun Y P, Feng Z H, Shen X M, Zhang BS, Feng G, Zheng X H, Yang H 2003 Chin. J. Semicond. 24 34(inChinese)[张泽洪,赵德刚,孙元平,冯志宏,沈晓明,张宝顺,冯淦,郑新和,杨辉 2003 半导体学报 24 34]

    [19]

    Chen H M, Chen Y F, Lee M C, Feng M S 1997 Phys. Rev. B 566942

    [20]

    Reddy C V, Balakrishnan K, Okumura H, Yoshida S 1998 Appl.Phys. Lett. 73 244

    [21]

    De Sio A, Achard J, Tallaire A, Sussmann R S, Collins A T, SilvaF, Pace E 2005 Appl. Phys. Lett. 86 213504

  • [1] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能. 物理学报, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [2] 郭越, 孙一鸣, 宋伟东. 多孔GaN/CuZnS异质结窄带近紫外光电探测器. 物理学报, 2022, 71(21): 218501. doi: 10.7498/aps.71.20220990
    [3] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 物理学报, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [4] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [5] 李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰. 低功耗、高灵敏的Bi2O2Se光电导探测器. 物理学报, 2020, 69(24): 248502. doi: 10.7498/aps.69.20201044
    [6] 刀流云, 张子涛, 肖煜同, 张明昊, 王帅, 何珺, 贾金山, 余乐军, 孙波, 熊昌民. 光电协同增强的场效应对LaAlO3/SrTiO3界面中持续光电导的调控. 物理学报, 2019, 68(6): 067302. doi: 10.7498/aps.68.20182204
    [7] 祁晓萌, 彭文博, 赵小龙, 贺永宁. 基于高阻ZnO薄膜的光电导型紫外探测器. 物理学报, 2015, 64(19): 198501. doi: 10.7498/aps.64.198501
    [8] 高仁喜, 高胜英, 范光华, 刘杰, 王强, 赵海峰, 曲士良. 飞秒激光改性6H-碳化硅晶体表面光电导增益现象研究. 物理学报, 2014, 63(6): 067801. doi: 10.7498/aps.63.067801
    [9] 王峰浩, 胡晓君. 氧离子注入微晶金刚石薄膜的微结构与光电性能研究. 物理学报, 2013, 62(15): 158101. doi: 10.7498/aps.62.158101
    [10] 施卫, 马湘蓉, 薛红. 半绝缘GaAs光电导开关的瞬态热效应. 物理学报, 2010, 59(8): 5700-5705. doi: 10.7498/aps.59.5700
    [11] 施卫, 薛红, 马湘蓉. 半绝缘GaAs光电导开关体内热电子的光电导振荡特性. 物理学报, 2009, 58(12): 8554-8559. doi: 10.7498/aps.58.8554
    [12] 贾婉丽, 施 卫, 屈光辉, 孙小芳. GaAs光电导天线辐射太赫兹波功率的计算. 物理学报, 2008, 57(9): 5425-5428. doi: 10.7498/aps.57.5425
    [13] 施 卫, 王馨梅, 侯 磊, 徐 鸣, 刘 峥. 高增益双层组合GaAs光电导开关设计与实验研究. 物理学报, 2008, 57(11): 7185-7189. doi: 10.7498/aps.57.7185
    [14] 施 卫, 贾婉丽, 纪卫莉, 刘 锴. 光电导开关工作模式的蒙特卡罗模拟. 物理学报, 2007, 56(11): 6334-6339. doi: 10.7498/aps.56.6334
    [15] 邱圣德, 胡承正, 王爱军, 周 详. 十次对称准晶的光电导率. 物理学报, 2006, 55(2): 743-747. doi: 10.7498/aps.55.743
    [16] 张春福, 郝 跃, 游海龙, 张金凤, 周小伟. 界面电偶极子对GaN/AlGaN/GaN光电探测器紫外/太阳光选择比的影响. 物理学报, 2005, 54(8): 3810-3814. doi: 10.7498/aps.54.3810
    [17] 张世斌, 孔光临, 徐艳月, 王永谦, 刁宏伟, 廖显伯. 微量硼掺杂非晶硅的瞬态光电导衰退及其光致变化. 物理学报, 2002, 51(1): 111-114. doi: 10.7498/aps.51.111
    [18] 张德恒, 刘云燕, 张德骏. 用MOCVD方法制备的n型GaN薄膜紫外光电导. 物理学报, 2001, 50(9): 1800-1804. doi: 10.7498/aps.50.1800
    [19] 彭景翠. 聚丁二炔(Polydiacetylene)晶体中的光电导性. 物理学报, 1993, 42(1): 142-148. doi: 10.7498/aps.42.142
    [20] 徐声, 李平. 三硫化二锑多晶薄膜的光电导性. 物理学报, 1962, 18(5): 254-258. doi: 10.7498/aps.18.254
计量
  • 文章访问数:  5816
  • PDF下载量:  535
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-29
  • 修回日期:  2011-06-08
  • 刊出日期:  2012-03-15

/

返回文章
返回