搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用液晶涂层测量介质流与壁面间剪切应力的定量模型与试验研究

张松鹏 张向军 田煜 孟永钢

引用本文:
Citation:

采用液晶涂层测量介质流与壁面间剪切应力的定量模型与试验研究

张松鹏, 张向军, 田煜, 孟永钢

A quantitative model and experimental investigations of wall shear stress between solid and gaseous fluid using liquid crystal coating

Zhang Song-Peng, Zhang Xiang-Jun, Tian Yu, Meng Yong-Gang
PDF
导出引用
  • 流场中介质流与壁面间剪切应力的定量测量,在运动物体例如航天器等的表面流场观测与表面减阻等领域有重要意义.本文采用向列相液晶涂层技术针对介质流与固体壁面间的剪切应力展开定量测量.首先利用液晶弹性变形理论建立了向列相分子在剪切应力场作用下旋光性光强信号与剪切应力大小的定量模型;进而,在固体表面制备了5 CB与7 CB向列相液晶涂层, 采用搭建的实验装置对不同剪切应力场下的测试涂层的光强进行了测试与理论模型的计算模拟, 测试结果与定量模型相当吻合;进一步探讨了液晶涂层测试技术的极限剪切应力、 灵敏范围以及涂层膜厚、分子弹性等关键影响因素.
    Measurement of wall shear stress (WSS) has important significance in many fields, such as spacecraft surface flow visualization and drag reduction of solid-liquid interface. Various measuring methods have been developed with the rapid development of micro and nano technology. This paper focuses on the measurement of WSS by using nematic liquid crystal coating. A quantitative model is built to describe the relationship between the variations of director orientation and the WSS based on the curvature elasticity theory of liquid crystal. Then an experiment setup is built to verify this model using 5 CB and 7 CB through the optical method. There is good consistence between the theoretical model and experiment results. Finally, the WSS measuring limits and influencing factors are discussed such as the thickness of the liquid crystal layer, the elastic coefficient of the molecule and measurement resolution.
    • 基金项目: 国家自然科学基金重大研究计划(批准号: 2012CB934101) 和国家自然科学基金(批准号: 50975154, 51175282)资助的课题.
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 2012CB934101) and the National Natural Science Foundation of China (Grant Nos. 50975154, 51175282).
    [1]

    Naughton J W, Sheplak M 2002 Progress in Aerospace Sciences 38 515

    [2]

    Wang X, Zhang X J, Meng Y G, Wen S Z 2009 China Mechanical Engineering 20 2081

    [3]

    Wang X, Zhang X J, Meng Y G, Wen S Z 2009 Tribology 29 200

    [4]

    Wang X, Zhang X J, Meng Y G, Wen S Z 2009 Nanotechnology and Precision Engineering 7 428

    [5]

    Wang X, Zhang X J, Meng Y G, Wen S Z 2008 Journal of Tsinghua University (Science and Technology) 48 1302

    [6]

    Xiong Y, Zhang X J, Zhang X H, Wen S Z 2010 Acta Phys. Sin. 59 7998 (in Chinese) [熊毅, 张向军, 张晓昊, 温诗铸 2010 物理学报 59 7978]

    [7]

    Lu H F, Jiang C Y, Deng J J, Ma B H, Yuan W Z 2010 Chin. J. Mech. Eng. 46 54

    [8]

    Heng Z, Jian Q, Ming X, Cheng H, Jiang W M 2008 Journal of Experiments in Fluid Mechanics 22 94

    [9]

    Tanner L H, Blows L G 1976 Journal of Physics E Scientific Instruments 9 194

    [10]

    Fukang J 1997 Proceedings of the Tenth Annual International Workshop on Micro Electro Mechanical Systems Nagoya, January 26-30, 1997 p465

    [11]

    Lofdahl L, Gad-el-Hak M 1999 Measurement Science {& Technology} 10 665

    [12]

    Buttsworth D R, Elston S J, Jones T V 1998 Journal of Turbomachinery-Transactions of the Asme 120 847

    [13]

    Buttsworth D R, Elston S J, Jones T V 1998 Measurement Science {& Technology} 9 1856

    [14]

    Reda D C, Wilder M C, Farina D J, Zilliac G 1997 Aiaa Journal 35 608

    [15]

    Fujisawa N, Oguma Y, Nakano T 2009 Measurement Science {& Technology} 20 065403

    [16]

    Parmar D S 1991 Rev. Sci. Instru. 62 474

    [17]

    Fujisawa N, Aoyama A, Kosaka S 2003 Measurement Science {& Technology} 14 1655

  • [1]

    Naughton J W, Sheplak M 2002 Progress in Aerospace Sciences 38 515

    [2]

    Wang X, Zhang X J, Meng Y G, Wen S Z 2009 China Mechanical Engineering 20 2081

    [3]

    Wang X, Zhang X J, Meng Y G, Wen S Z 2009 Tribology 29 200

    [4]

    Wang X, Zhang X J, Meng Y G, Wen S Z 2009 Nanotechnology and Precision Engineering 7 428

    [5]

    Wang X, Zhang X J, Meng Y G, Wen S Z 2008 Journal of Tsinghua University (Science and Technology) 48 1302

    [6]

    Xiong Y, Zhang X J, Zhang X H, Wen S Z 2010 Acta Phys. Sin. 59 7998 (in Chinese) [熊毅, 张向军, 张晓昊, 温诗铸 2010 物理学报 59 7978]

    [7]

    Lu H F, Jiang C Y, Deng J J, Ma B H, Yuan W Z 2010 Chin. J. Mech. Eng. 46 54

    [8]

    Heng Z, Jian Q, Ming X, Cheng H, Jiang W M 2008 Journal of Experiments in Fluid Mechanics 22 94

    [9]

    Tanner L H, Blows L G 1976 Journal of Physics E Scientific Instruments 9 194

    [10]

    Fukang J 1997 Proceedings of the Tenth Annual International Workshop on Micro Electro Mechanical Systems Nagoya, January 26-30, 1997 p465

    [11]

    Lofdahl L, Gad-el-Hak M 1999 Measurement Science {& Technology} 10 665

    [12]

    Buttsworth D R, Elston S J, Jones T V 1998 Journal of Turbomachinery-Transactions of the Asme 120 847

    [13]

    Buttsworth D R, Elston S J, Jones T V 1998 Measurement Science {& Technology} 9 1856

    [14]

    Reda D C, Wilder M C, Farina D J, Zilliac G 1997 Aiaa Journal 35 608

    [15]

    Fujisawa N, Oguma Y, Nakano T 2009 Measurement Science {& Technology} 20 065403

    [16]

    Parmar D S 1991 Rev. Sci. Instru. 62 474

    [17]

    Fujisawa N, Aoyama A, Kosaka S 2003 Measurement Science {& Technology} 14 1655

  • [1] 陈红梅, 李世伟, 李凯靖, 张智勇, 陈浩, 王婷婷. 向列相液晶分子结构与黏度关系研究及BPNN-QSAR模型建立. 物理学报, 2024, 73(6): 066101. doi: 10.7498/aps.73.20231763
    [2] 汪浩然, 张银川, 胡巍, 郭旗. 向列相液晶的饱和非线性及双稳态孤子. 物理学报, 2023, 72(7): 074204. doi: 10.7498/aps.72.20222088
    [3] 梁德山, 黄厚兵, 赵亚楠, 柳祝红, 王浩宇, 马星桥. 拓扑荷在圆盘状向列相液晶薄膜中的尺寸效应. 物理学报, 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [4] 路丽霞, 张志东, 周璇. 混合排列向列相液晶薄盒中1/2向错引起的有序重构的扩散. 物理学报, 2013, 62(22): 226101. doi: 10.7498/aps.62.226101
    [5] 刘永军, 孙伟民, 刘晓颀, 姚丽双, 鲁兴海, 宣丽. 向列相液晶染料可调谐激光器的研究. 物理学报, 2012, 61(11): 114211. doi: 10.7498/aps.61.114211
    [6] 任常愚, 孙秀冬, 裴延波. 向列相液晶中弱光引致各向异性衍射图样的研究. 物理学报, 2009, 58(1): 298-303. doi: 10.7498/aps.58.298.1
    [7] 朱叶青, 龙学文, 胡 巍, 曹龙贵, 杨平保, 郭 旗. 非局域程度对向列相液晶中空间光孤子的影响. 物理学报, 2008, 57(4): 2260-2265. doi: 10.7498/aps.57.2260
    [8] 杨平保, 曹龙贵, 胡 巍, 朱叶青, 郭 旗, 杨湘波. 向列相液晶中强非局域空间光孤子的相互作用. 物理学报, 2008, 57(1): 285-290. doi: 10.7498/aps.57.285
    [9] 龙学文, 胡 巍, 张 涛, 郭 旗, 兰 胜, 高喜存. 向列相液晶中强非局域空间光孤子传输的理论研究. 物理学报, 2007, 56(3): 1397-1403. doi: 10.7498/aps.56.1397
    [10] 展凯云, 裴延波, 侯春风. 向列相液晶中空间光孤子的观测. 物理学报, 2006, 55(9): 4686-4690. doi: 10.7498/aps.55.4686
    [11] 刘 红, 王 慧. 双轴性向列相液晶的相变理论. 物理学报, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [12] 张志东, 张艳君. 空间各向异性两体势向列相液晶形变研究. 物理学报, 2004, 53(8): 2670-2675. doi: 10.7498/aps.53.2670
    [13] 刘红. 双轴向列相液晶的表面能. 物理学报, 2002, 51(12): 2786-2792. doi: 10.7498/aps.51.2786
    [14] 郭建新, 郭海成. 高性能双稳态向列相液晶显示器. 物理学报, 2000, 49(10): 1995-2000. doi: 10.7498/aps.49.1995
    [15] 张志东, 杨国琛. 向列型液晶中分子短程关联的研究. 物理学报, 1994, 43(8): 1241-1245. doi: 10.7498/aps.43.1241
    [16] 刘红. 梳型高分子聚合物向列相液晶的相变. 物理学报, 1992, 41(4): 609-616. doi: 10.7498/aps.41.609
    [17] 杨国琛, 张志东. 向列型液晶分子理论中的短程关联. 物理学报, 1988, 37(4): 638-644. doi: 10.7498/aps.37.638
    [18] 初桂荫, 朱化南, 张治国, 傅盘铭, 叶佩弦. 掺染料向列相液晶的简并四波混频研究. 物理学报, 1985, 34(3): 421-425. doi: 10.7498/aps.34.421
    [19] 诸国桢, 倪惠, 张文竹. 向列液晶层中的指向波实验. 物理学报, 1983, 32(7): 845-853. doi: 10.7498/aps.32.845
    [20] 王心宜, 林磊. 向列相液晶电流体不稳定性——偏置电场效应. 物理学报, 1983, 32(12): 1565-1573. doi: 10.7498/aps.32.1565
计量
  • 文章访问数:  6944
  • PDF下载量:  414
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-30
  • 修回日期:  2012-06-26
  • 刊出日期:  2012-12-05

/

返回文章
返回