搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交码元移位键控扩频水声通信

于洋 周锋 乔钢

引用本文:
Citation:

正交码元移位键控扩频水声通信

于洋, 周锋, 乔钢

Orthogonal code shift keying spread spectrum underwater acoustic communication

Yu Yang, Zhou Feng, Qiao Gang
PDF
导出引用
  • 码元移位键控(CSK)作为一种广义的M元扩频技术被广泛应用于水声通信领域来克服扩频增益对通信速率的限制.为了获得更高的通信速率, 减少通道间干扰, 并充分利用 CSK的冗余信息, 本文提出联合利用码元相位信息的正交双通道CSK扩频水声通信技术.首先, 推导了正交CSK每符号积分输出的表达式; 然后, 研究了正交CSK的性能及与传统CSK和双通道CSK对比仿真的误码率; 最后, 通过实验验证了仿真对比的正确性. 实现了正交CSK在104 bits, 4 kHz带宽下580.6 bps通信速率的有效传输. 通过公式推导、 仿真分析和实验研究, 得到正交CSK提供了优良的性能的结论.
    Code shift keying (CSK) is generally used to overcome the spreading gain versus data rate limitation in underwater acoustic (UWA) communication as generalized M-ary spread spectrum technology. In addition, the concept of orthogonal CSK is introduced into the UWA communication to achieve higher rate, mitigate crosstalk from the other thoroughfare and utilize the redundant information of CSK adequately. In this paper, we propose a new scheme employing orthogonal double thoroughfare CSK spread spectrum UWA communication with utilizing code phase information combined. First, each symbol integration output form of the proposed method is deduced. Furthermore, the property of orthogonal CSK is analyzed and its bit error rate is investigated as compared with conventional CSK and double thoroughfare CSK via simulation. Finally, the validity of simulation comparison is verified in experiment. 580.6 bps data rate of the proposed communication scheme is realized in 104 bit volume and 4 kHz bandwidth efficiently. It is shown that the proposed method provides significantly improved communication performance through formula, simulation and test.
    • 基金项目: 国家高技术发展研究计划重点项目(批准号: 2009AA093601-2)、国防基础项目研究 (批准号: B2420110007)和水声技术重点实验室基金(批准号: 9140C200801110C2004)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA093601-2), the National Defense Basic Research of China (Grant No. B2420110007), and the Underwater Acoustic Technology Laboratory Foundation, China (Grant No. 9140C200801110C2004).
    [1]

    Kilfoyle D B, Baggerroer A B 2000 IEEE J. Ocean Eng. 25 1

    [2]

    Catipovic J A 1990 IEEE J. Ocean Eng. 15 205

    [3]

    Stojanovic M, Preisig J 2009 IEEE Commun. Mag. 47 84

    [4]

    Jamshidi A 2011 IET Commun. 5 456

    [5]

    Tsai Y R, Li X S 2007 IEEE Trans. Commun. 55 1242

    [6]

    Tsai Y R 2009 IEEE Trans. Commun. 57 3220

    [7]

    He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 物理学报 58 8379]

    [8]

    Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 5915 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 慧娟 2007 物理学报 56 5915]

    [9]

    Xiao P, Strom E G 2005 IEEE Trans. Veh. Technol. 54 1400

    [10]

    Hong E K, Kim K J, Whang K C 1996 IEEE Trans. Veh. Technol. 45 57

    [11]

    Jalloul L M A, Holzman J M 1994 IEEE J. Sel. Areas Commun. 12 862

  • [1]

    Kilfoyle D B, Baggerroer A B 2000 IEEE J. Ocean Eng. 25 1

    [2]

    Catipovic J A 1990 IEEE J. Ocean Eng. 15 205

    [3]

    Stojanovic M, Preisig J 2009 IEEE Commun. Mag. 47 84

    [4]

    Jamshidi A 2011 IET Commun. 5 456

    [5]

    Tsai Y R, Li X S 2007 IEEE Trans. Commun. 55 1242

    [6]

    Tsai Y R 2009 IEEE Trans. Commun. 57 3220

    [7]

    He C B, Huang J G, Han J, Zhang Q F 2009 Acta Phys. Sin. 58 8379 (in Chinese) [何成兵, 黄建国, 韩晶, 张群飞 2009 物理学报 58 8379]

    [8]

    Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 5915 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 慧娟 2007 物理学报 56 5915]

    [9]

    Xiao P, Strom E G 2005 IEEE Trans. Veh. Technol. 54 1400

    [10]

    Hong E K, Kim K J, Whang K C 1996 IEEE Trans. Veh. Technol. 45 57

    [11]

    Jalloul L M A, Holzman J M 1994 IEEE J. Sel. Areas Commun. 12 862

计量
  • 文章访问数:  5497
  • PDF下载量:  576
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-01
  • 修回日期:  2012-09-19
  • 刊出日期:  2013-03-05

/

返回文章
返回