搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pb液滴在Ni基底润湿铺展行为的分子动力学模拟

邱丰 王猛 周化光 郑璇 林鑫 黄卫东

引用本文:
Citation:

Pb液滴在Ni基底润湿铺展行为的分子动力学模拟

邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东

Molecular dynamics simulation of the wetting behavior of Pb droplet on Ni substrate

Qiu Feng, Wang Meng, Zhou Hua-Guang, Zheng Xuan, Lin Xin, Huang Wei-Dong
PDF
导出引用
  • 采用分子动力学方法研究了Pb液滴在Ni(100)晶面、(110)晶面和(111)晶面的铺展润湿行为. 结果表明: Pb液滴在Ni(100)及(111)基底上的润湿铺展现象呈各向同性, 而在Ni(110)基底上的润湿铺展现象呈明显的各向异性, 且这种各向异性源于Ni(110)晶面点阵结构上Pb原子沿不同晶向的扩散机制及速度的明显差异; Pb液滴在Ni(111)晶面上铺展时, 未发生表面合金化, 液滴铺展动力学描述近似满足 R2 t, 而液滴在(100)晶面和(110)晶面上铺展时表面产生合金化现象, 铺展动力学关系近似满足 R4 t, 且液滴在(100)晶面上的铺展速度高于(110)晶面上的铺展速度.
    Molecular dynamics simulation is performed to investigate the wetting behaviors of Pb droplet on Ni(100), Ni(110) and Ni(111) substrates. It has been shown that the wetting behavior of precursor film is isotropic for Pb droplet on Ni(100) and Ni(111) substrates, but anisotropic for Pb droplet on Ni(110) substrate. The demonstrated anisotropy is attributed to the differences in diffusion mechanism and rate along different crystal orientations for Pb atoms with corresponding anisotropic structure of the crystal lattice on Ni(110) substrate. The spreading dynamics of precursor film on different lattice surfaces are also investigated, which shows that there is no surface alloy formed for Pb droplet on Ni(111) surface and the spreading dynamics can be described by R2 t, but surface alloy forms for Pb droplet on Ni(100) and Ni(110) surface and the spreading dynamics satisfies R4 t, at the same time the spreading rate of droplet on Ni(100) is higher than that of Ni(110) substrate.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB610402)和国家自然科学基金(批准号: 51271213, 50901061)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB610402) and the National Natural Science Foundation of China (Grant Nos. 51271213, 50901061).
    [1]

    Evans R 1979 Adv. Phys. 28 143

    [2]

    Fu X C, Shen W X, Yao T Y, Hou W H 2005 Physical Chemistry (5th Ed. Vol. 2) (Beijing: Higher Education Press) p311 (in Chinese) [傅献彩, 沈文霞, 姚天扬, 侯文华 2005 物理化学(第五版下册)(北京: 高等教育出版社) 第311页]

    [3]

    Zang D Y, Zhang Y J 2012 Acta Phys. Sin. 61 026803 (in Chinese) [臧渡洋, 张永建 2012 物理学报 61 026803]

    [4]

    Zheng H Y, Wang M, Wang X X, Huang W D 2011 Acta Phys. Sin. 60 066402 (in Chinese) [郑浩勇, 王猛, 王修星, 黄卫东 2011 物理学报 60 066402]

    [5]

    Heslot F, Fraysse N, Cazabat A M 1989 Nature 338 640

    [6]

    Edmund W B, Gary G S, David R H 2003 Phys. Rev. Lett. 91 236102

    [7]

    Timoshenko V, Bochenkov V, Traskine V, Protsenko P 2012 J. Mater. Eng. Perform. 21 575

    [8]

    Swiler T P 2000 Acta Mater. 48 4775

    [9]

    Kubo A, Makino T, Sugiyama D, Tanaka S I 2005 J. Mater. Eng. Perform. 40 2395

    [10]

    Cazabat A M, Fraysse N, Heslot F 1991 Colloid Surface 52 1

    [11]

    Moon J, Wynblatt P, Garoff S, Suter R 2004 Langmuir 20 402

    [12]

    Moon J, Wynblatt P, Garoff S, Suter R 2004 Surf. Sci. 559 149

    [13]

    Landry K, Eustathopoulos N 1996 Acta Mater. 44 3923

    [14]

    Yost F G, Sackinger P A, O'Toole E J 1998 Acta Mater. 46 2329

    [15]

    Mortensen A, Drevet B, Eustathopoulos N 1997 Scripta Mater. 36 645

    [16]

    Voitovitch R, Mortensen A, Hodaj F, Eustathopoulos N 1999 Acta Mater. 47 1117

    [17]

    Sutton A P, Chen J 1990 Phil. Mag. Lett. 60 139

    [18]

    Tabar H R, Sutton A P 1991 Phil. Mag. Lett. 63 217

    [19]

    Kimura Y, Qi Y, Çağin T, Goddard III W 1998 Caletech. Asci. Technical. Report 003

    [20]

    Çağin T, Dereli G, Uludoğan M, Tomak M 1999 Phys. Rev. B 59 3468

    [21]

    Smith W, Yong C W, Rodger P M 2002 Mol. Simulat. 28 385

    [22]

    Popescu M N, Oshanin G, Dietrich S, Cazabat A M 2012 J. Phys. Condens. Matter. 24 3

    [23]

    Prévot G, Cohen C, Moulin J, Schmaus D 1999 Surf. Sci. 421 364

    [24]

    Kellogg G L 1991 Phys. Rev. Lett. 67 216

    [25]

    Kellogg G L 1995 Appl. Surf. Sci. 87 353

    [26]

    Xie G F, Wang D W, Ying C T 2003 Acta Phys. Sin. 52 2254 (in Chinese) [谢国锋, 王德武, 应纯同 2003 物理学报 52 2254]

    [27]

    Basset D W, Webber P R 1978 Surf. Sci. 70 520

  • [1]

    Evans R 1979 Adv. Phys. 28 143

    [2]

    Fu X C, Shen W X, Yao T Y, Hou W H 2005 Physical Chemistry (5th Ed. Vol. 2) (Beijing: Higher Education Press) p311 (in Chinese) [傅献彩, 沈文霞, 姚天扬, 侯文华 2005 物理化学(第五版下册)(北京: 高等教育出版社) 第311页]

    [3]

    Zang D Y, Zhang Y J 2012 Acta Phys. Sin. 61 026803 (in Chinese) [臧渡洋, 张永建 2012 物理学报 61 026803]

    [4]

    Zheng H Y, Wang M, Wang X X, Huang W D 2011 Acta Phys. Sin. 60 066402 (in Chinese) [郑浩勇, 王猛, 王修星, 黄卫东 2011 物理学报 60 066402]

    [5]

    Heslot F, Fraysse N, Cazabat A M 1989 Nature 338 640

    [6]

    Edmund W B, Gary G S, David R H 2003 Phys. Rev. Lett. 91 236102

    [7]

    Timoshenko V, Bochenkov V, Traskine V, Protsenko P 2012 J. Mater. Eng. Perform. 21 575

    [8]

    Swiler T P 2000 Acta Mater. 48 4775

    [9]

    Kubo A, Makino T, Sugiyama D, Tanaka S I 2005 J. Mater. Eng. Perform. 40 2395

    [10]

    Cazabat A M, Fraysse N, Heslot F 1991 Colloid Surface 52 1

    [11]

    Moon J, Wynblatt P, Garoff S, Suter R 2004 Langmuir 20 402

    [12]

    Moon J, Wynblatt P, Garoff S, Suter R 2004 Surf. Sci. 559 149

    [13]

    Landry K, Eustathopoulos N 1996 Acta Mater. 44 3923

    [14]

    Yost F G, Sackinger P A, O'Toole E J 1998 Acta Mater. 46 2329

    [15]

    Mortensen A, Drevet B, Eustathopoulos N 1997 Scripta Mater. 36 645

    [16]

    Voitovitch R, Mortensen A, Hodaj F, Eustathopoulos N 1999 Acta Mater. 47 1117

    [17]

    Sutton A P, Chen J 1990 Phil. Mag. Lett. 60 139

    [18]

    Tabar H R, Sutton A P 1991 Phil. Mag. Lett. 63 217

    [19]

    Kimura Y, Qi Y, Çağin T, Goddard III W 1998 Caletech. Asci. Technical. Report 003

    [20]

    Çağin T, Dereli G, Uludoğan M, Tomak M 1999 Phys. Rev. B 59 3468

    [21]

    Smith W, Yong C W, Rodger P M 2002 Mol. Simulat. 28 385

    [22]

    Popescu M N, Oshanin G, Dietrich S, Cazabat A M 2012 J. Phys. Condens. Matter. 24 3

    [23]

    Prévot G, Cohen C, Moulin J, Schmaus D 1999 Surf. Sci. 421 364

    [24]

    Kellogg G L 1991 Phys. Rev. Lett. 67 216

    [25]

    Kellogg G L 1995 Appl. Surf. Sci. 87 353

    [26]

    Xie G F, Wang D W, Ying C T 2003 Acta Phys. Sin. 52 2254 (in Chinese) [谢国锋, 王德武, 应纯同 2003 物理学报 52 2254]

    [27]

    Basset D W, Webber P R 1978 Surf. Sci. 70 520

  • [1] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20232026
    [2] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [3] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [4] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [5] 王康, 徐成, 吴晋锋, 杨恺, 元冰. 蜂毒肽与单组分脂膜相互作用的单分子研究. 物理学报, 2021, 70(17): 178701. doi: 10.7498/aps.70.20210477
    [6] 于航, 张冉, 杨帆, 李桦. 气体-表面相互作用中动量和能量分量间转化机制的分子动力学研究. 物理学报, 2021, 70(2): 024702. doi: 10.7498/aps.70.20201192
    [7] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [8] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究. 物理学报, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [9] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [10] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性. 物理学报, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [11] 简小刚, 张允华. 温度对金刚石涂层膜基界面力学性能的影响. 物理学报, 2015, 64(4): 046701. doi: 10.7498/aps.64.046701
    [12] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [13] 郭巧能, 曹义刚, 孙强, 刘忠侠, 贾瑜, 霍裕平. 温度对超薄铜膜疲劳性能影响的分子动力学模拟. 物理学报, 2013, 62(10): 107103. doi: 10.7498/aps.62.107103
    [14] 陈谷然, 宋超, 徐骏, 王旦清, 徐岭, 马忠元, 李伟, 黄信凡, 陈坤基. 脉冲激光晶化超薄非晶硅膜的分子动力学研究. 物理学报, 2010, 59(8): 5681-5686. doi: 10.7498/aps.59.5681
    [15] 何安民, 秦承森, 邵建立, 王裴. 金属Al表面熔化各向异性的分子动力学模拟. 物理学报, 2009, 58(4): 2667-2674. doi: 10.7498/aps.58.2667
    [16] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [17] 刘 浩, 柯孚久, 潘 晖, 周 敏. 铜-铝扩散焊及拉伸的分子动力学模拟. 物理学报, 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [18] 高垣梅, 刘思敏, 赵红娥, 黄春福, 郭 儒, 汪大云. c向切割掺杂LiNbO3晶体中的光耦合. 物理学报, 2003, 52(5): 1162-1167. doi: 10.7498/aps.52.1162
    [19] 谢国锋, 王德武, 应纯同. 分子动力学模拟Gd原子在Cu(110)表面的扩散过程. 物理学报, 2003, 52(9): 2254-2258. doi: 10.7498/aps.52.2254
    [20] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟. 物理学报, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
计量
  • 文章访问数:  5397
  • PDF下载量:  679
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-26
  • 修回日期:  2013-02-28
  • 刊出日期:  2013-06-05

/

返回文章
返回